por rubronegro » Qui Mai 26, 2011 21:41
01.
Gostaria de confirmar se a minha demonstração está correta.
(A-B)?(B-A)=A?B se, e somente se, A?B=? ( a ida)
Se x?(A-B)?(B-A),então ? x?A,x?B ou ? x?B,x?A.
Temos que x?A ou x?B.Logo,x?A?B se A?B=?.
A?B=? se, e somente se, (A-B)?(B-A)=A?B ( a volta)
Se A?B=?,então ? elementos comuns no conj.A e B,temos que se
x?A,x?B ou se x?B,x?A.Logo,(A-B)?(B-A)=A?B.
02.
Na relação ~ RxR por (x,y)~(z,w)? 2(x-z)-3(y-w)=0,
não sei como determinar a classe de equivalência (x,y)
como um subconjunto do plano euclideano.
03.
Seja E={x?Q/|x²-2|?2x+1}.Determine o ínfimo,supremo,máximo e mínimo de E.
Bom , respondi da seguinte forma.
Em Q,o conjunto E={x?Q / x^2-2 ? 2x+1 ou -x^2+2 ? 2x+1}
x^2-2x-3?0=[-1,3]
-x^2-2x+1?0=(-?,-1-?2 ]?[-1+?2,+?)
O conj.será definido pelo intervalo
[-1,3]?(-?,-1-?2 ]?[-1+?2,+?)?Q,
ou seja,(-?,-1-?2)?(-1+?2,+?),
mas E não possue ínfimo,supremo,máximo e mínimo em Q.
Por favor, gostaria que avaliasse as resoluções.
-
rubronegro
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Fev 25, 2011 23:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- conjuntos relações
por Renatinha » Qui Nov 11, 2010 19:18
- 4 Respostas
- 2727 Exibições
- Última mensagem por ricardoorpinelli

Sáb Nov 20, 2010 21:08
Álgebra Elementar
-
- conjuntos e relações
por Renatinha » Qua Nov 17, 2010 19:09
- 14 Respostas
- 9232 Exibições
- Última mensagem por Maria Helena

Ter Nov 15, 2011 21:12
Álgebra Elementar
-
- Relaçoes entre conjuntos
por Zanatta » Qua Abr 24, 2013 20:42
- 0 Respostas
- 1254 Exibições
- Última mensagem por Zanatta

Qua Abr 24, 2013 20:42
Conjuntos
-
- Conjuntos, Relações, Equações e Função Quadrática
por angeloka » Qui Out 21, 2010 21:17
- 12 Respostas
- 8650 Exibições
- Última mensagem por francisca

Seg Nov 22, 2010 10:29
Funções
-
- Conjuntos, Relações, Equações e Função Quadrática
por angeloka » Ter Nov 02, 2010 15:32
- 2 Respostas
- 1785 Exibições
- Última mensagem por angeloka

Ter Nov 02, 2010 18:31
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.