por Debora Bruna » Seg Jan 11, 2016 18:48
Quando li esse exercício,((UFSM-RS) Acrescentando-se dois novos elementos a um conjunto A, verificou-se que o número de subconjuntos de A teve um acréscimo de 384. Quantos elementos possuía originalmente o conjunto A?) comecei da seguinte forma:
Acrescentando-se dois novos elementos a um conjunto A
Conjunto A = n, acrescentando-se 2, vai n+2.
o número de subconjuntos de A teve um acréscimo de 384
n=2^n. e n+2= 2^n+2
começando a resolver:
n+2= 2^n+2 + 384.
Parei aqui.
A resolução que encontrei na internet é essa:
2n+2 = 2n+384
2n. 2^2 = 2n + 384
4. 2n= 2n+384
2n= 384/3
2n=128
2n= 2^7
n=7
E depois de torrar todos os neurônios, a entendi. Só que porque não começa com: ? Já que, se o número de elementos de um conjunto n = 2^n, então o número de elementos de um conjunto n+2 = 2^n+2, então deveria prosseguir da seguinte forma n+2= 2^n+2 + 384, não é?
-
Debora Bruna
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Dez 15, 2014 17:49
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por DanielFerreira » Dom Fev 07, 2016 15:05
Debora Bruna escreveu:(UFSM-RS) Acrescentando-se dois novos elementos a um conjunto A, verificou-se que o número de subconjuntos de A teve um acréscimo de 384. Quantos elementos possuía originalmente o conjunto A?
Vamos supor que o conjunto A tenha

elementos, então a quantidade de subconjuntos do conjunto A é dado por

.
Ora, se acrescentamos dois elementos ao conjunto A, podemos concluir que o número de subconjuntos do "novo" conjunto será dado por

.
Do enunciado,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida em exercicio de Conjuntos
por krobc » Sáb Mar 17, 2012 12:07
- 0 Respostas
- 1120 Exibições
- Última mensagem por krobc

Sáb Mar 17, 2012 12:07
Conjuntos
-
- [Conjuntos] Dúvida em exercício.
por Debora Bruna » Seg Jan 11, 2016 18:49
- 1 Respostas
- 2057 Exibições
- Última mensagem por DanielFerreira

Dom Fev 07, 2016 20:49
Conjuntos
-
- [Conjuntos] Exercício de conjuntos com áreas
por redleader » Ter Abr 02, 2013 16:12
- 0 Respostas
- 1492 Exibições
- Última mensagem por redleader

Ter Abr 02, 2013 16:12
Conjuntos
-
- [Conjuntos] Dúvida sobre conjuntos vazios
por ALPC » Qui Set 18, 2014 18:28
- 5 Respostas
- 6108 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 15:44
Conjuntos
-
- Exercício de Conjuntos
por Loretto » Seg Out 11, 2010 18:26
- 0 Respostas
- 1268 Exibições
- Última mensagem por Loretto

Seg Out 11, 2010 18:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.