por Ovelha » Qua Nov 27, 2013 13:03
conituando topico anterior tem mais essa
Se A

B=

então A

=A
Seja x

(A

B)=


x

A e x

B
x

(A

B)=


x

A e x e x

B. Daí x

(A

B) e x

(A

B). Contradição
Agradeço desde já a compreensão e ajuda de todos
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Nov 27, 2013 14:30
Na minha opinião ,novamente você errou no inicio em dizer que " seja

" . Ora , se por hipótese

então não podemos ter

pertencendo a este conjunto .
Tenho uma dica :
Trivialmente

, então basta mostra que

para concluir que

.
Espero que ajude .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Nov 27, 2013 16:13
Olá. No caso dessa questão eu já havia entendido a interseção não daria certo apenas mostrei que seria contradição dizer isso a ideia era mostra a contradição então peço que mostre como ficaria o que vc está falando.
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
por e8group » Qua Nov 27, 2013 16:33
OK . Vamos tentar .
Dado

em

,temos que

não pertence a

(pois por hipótese

são disjuntos ) . Desta forma, concluímos que

pertence a interseção de

com

e como

é genérico, mostramos

e assim o resultado segue .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Ovelha » Qua Nov 27, 2013 16:41
Obrigado
-
Ovelha
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Nov 13, 2013 11:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em física
- Andamento: cursando
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Demonstração de conjnuntos
por Ovelha » Qua Nov 27, 2013 17:41
- 2 Respostas
- 1197 Exibições
- Última mensagem por Ovelha

Qui Nov 28, 2013 12:49
Conjuntos
-
- DEMONSTRAÇÃO
por arima » Seg Nov 08, 2010 08:40
- 8 Respostas
- 5567 Exibições
- Última mensagem por roseli

Qua Nov 10, 2010 21:03
Álgebra Elementar
-
- Demonstração
por Lorettto » Qui Dez 16, 2010 23:03
- 3 Respostas
- 2077 Exibições
- Última mensagem por Elcioschin

Seg Dez 20, 2010 12:39
Álgebra Elementar
-
- Demonstração
por Pedro2 » Sáb Mar 12, 2011 15:38
- 1 Respostas
- 1815 Exibições
- Última mensagem por Guill

Sex Abr 20, 2012 16:01
Matrizes e Determinantes
-
- PA - Demonstração
por jessicaccs » Sex Mar 25, 2011 11:52
- 1 Respostas
- 1343 Exibições
- Última mensagem por Elcioschin

Sex Mar 25, 2011 14:55
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.