• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Definição de um numero real

Definição de um numero real

Mensagempor Zanatta » Ter Mar 05, 2013 18:37

Olá, tentei ler a teoria pelo liro e fiquei meio confuso, acabei nao conseguindo resolver esse exercicio, quem puder me ajudar:
É numero real ? Justifique sua resposta.

a(alfa) = {p E(pertence) Q | 3p + 1< 2p - 5}


quem puder me ajudar, grato desde já.
Zanatta
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Mar 05, 2013 18:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: Definição de um numero real

Mensagempor e8group » Qua Mar 06, 2013 10:32

Definição :

Um número real é um subconjunto \alpha,de números racionais ,que satisfaz 4 propriedades .

(1) Se x \in \alpha e y é um número racional com y < x ,então y \in \alpha .

(2) \alpha \neq \varnothing

(3) \alpha \neq \mathbb{Q}

(4) \alpha não tem máximo , em outras palavras ,se x \in \alpha ,então existe algum y em \alpha com y>x .


Solução :

Dado o subconjunto \alpha =\{p\in \mathbb{Q} :3p+1 < 2p -5\} ,temos :

(1) Sejam a,b racionais quaisquer , com a \in \alpha e b < a ,temos :

a \in \alpha \iff a < -6 .

Como b < a ,segue b < -6 implica que b \in \alpha

(2) \alpha \neq \varnothing (é fácil ver !) , - 8 \in \alpha

(3) \alpha \neq \mathbb{Q} ,pois, 7 \in \mathbb{Q} e 7 \notin \alpha

Deixo para você desenvolver a propriedade (4) e concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Definição de um numero real

Mensagempor e8group » Qua Mar 06, 2013 10:33

Definição :

Um número real é um subconjunto \alpha,de números racionais ,que satisfaz 4 propriedades .

(1) Se x \in \alpha e y é um número racional com y < x ,então y \in \alpha .

(2) \alpha \neq \varnothing

(3) \alpha \neq \mathbb{Q}

(4) \alpha não tem máximo , em outras palavras ,se x \in \alpha ,então existe algum y em \alpha com y>x .


Solução :

Dado o subconjunto \alpha =\{p\in \mathbb{Q} :3p+1 < 2p -5\} ,temos :

(1) Sejam a,b racionais quaisquer , com a \in \alpha e b < a ,temos :

a \in \alpha \iff a < -6 .

Como b < a ,segue b < -6 implica que b \in \alpha

(2) \alpha \neq \varnothing (é fácil ver !) , - 8 \in \alpha

(3) \alpha \neq \mathbb{Q} ,pois, 7 \in \mathbb{Q} e 7 \notin \alpha

Deixo para você desenvolver a propriedade (4) e concluir o exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}