Considere as seguintes premissas( onde X, Y,Z e P são conjuntos não vazios):
Premissa 1: "X está contido em Y e em Z, ou está contido em P"
Premissa 2: "X não está contido em P"
pode-se, então,concluir que, necessariamente
a) Y está contido em Z
b)X esta contido em Z
c) Y está contido em Z ou em P
d)X não está contido nem em P nem em Y
c) X não está contido nem em Y e nem em Z
Galera tentei resolver usando a tabela verdade, mas não consegui.


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)