• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema enolvendo conjuntos, demostração e provas

Problema enolvendo conjuntos, demostração e provas

Mensagempor moyses » Ter Mai 01, 2012 20:50

Olá gente beleza? Eu estava estudando teoria de conjuntos no Livro de Matemática "MATEMÀTICA AULA POR AULA", de Benigno Barreto Filho e Cláudio Xavier da Silva. Cheguei numa pergunta que não consigui interpreta-la .A minha duvida é de o que o problema ta querendo dizer? e como provar o que diz nessa pergunta 43 contida na pagina 38 desse livro que eu mencione acima?.
Bem Ai vai: 43 (ITA-SP) Sejam U um conjunto não-vazio e A\subset U , B\subset U. Usando apenas as definições de igualdade, reunião, intercecção e complementar, prove que:
I- SE A\cap B = \varnothing, então B\subset {A}^{C}.

II-SE \frac{B}{{A}^{C}}=B\cap A.

e ai que está , gente eu nem sei como começar. O que o item II ta querendo dizer? e como provar o item I e o II? por favor me ajudem pois eu tentei e não consegui! *-) :y:
PS- essa {A}^{C} e o complemento do próprio conjunto, eu dei uma pesquisada na net porque eu tabem não sabia hehe. e o item dois tem um divisão do conjunto B pelo complemento do proprio conjunto A ? e isso mesmo? fica a duvida! falow desde já eu agradeço a todos faloww pessoal! :)
moyses
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Seg Ago 29, 2011 09:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: SISTEMA DE INFORMAÇÃO
Andamento: cursando

Re: Problema enolvendo conjuntos, demostração e provas

Mensagempor fraol » Ter Mai 01, 2012 22:52

Boa noite,

Segue a minha resolução para sua avaliação:

I)

Como A \cap B = \emptyset temos que se x \in A => x \not \in B . (editei aqui p/ corrigir digitação)

A^C => x \not \in A . Assim concluímos que B \subset A^C.

II)

Suponho que a notação seja B \setminus A^C = B \cap A. Aqui B \setminus A^C significa B menos A^C, ou seja o conjunto dos elementos que estão em B e não estão em A^C.

Assim B \setminus A^C => x \in B e x \not \in A^C.

Como em I) temos que todo x em B também está em A^C então

B \setminus A^C = \emptyset = A \cap B = B \cap A.

.
Editado pela última vez por fraol em Ter Mai 01, 2012 23:54, em um total de 1 vez.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Problema enolvendo conjuntos, demostração e provas

Mensagempor moyses » Ter Mai 01, 2012 23:37

Teria com você exclicar melhor é por que é meio estrainho isso. Se a intersecção de A com B é igual a vazio como B estaria contido no conjunto complementar de A no Item I?
moyses
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Seg Ago 29, 2011 09:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: SISTEMA DE INFORMAÇÃO
Andamento: cursando

Re: Problema enolvendo conjuntos, demostração e provas

Mensagempor fraol » Ter Mai 01, 2012 23:49

Se a interseção de A com B é vazia então A e B não tem elementos em comum, certo?

O complementar de A são todos os elementos do conjunto Universo que não estão em A, certo?

Se os elementos de B não estão em A então estão no complementar de A.

Caso a dúvida permaneça manda de volta pra gente discutir.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Problema enolvendo conjuntos, demostração e provas

Mensagempor moyses » Qua Mai 02, 2012 10:08

Ahh entendi ! eu pensava que a complementar do proprio A seria A-A só que eu me enganei, como no enunciado diz que A\subset U e tambem que B\subset U então no
Item I e no II dois fica assim:(Explicarei como eu entendi heheh :) )
I- SE A\cap B = \varnothing, então como {A}^{C} = U então B\subset {A}^{C}\Rightarrow B\subset U então como {A}^{C}=\left(X\in U |X\notin A \right)\Rightarrow U-A. então o que você me falou é verdade que o B\subset {A}^{C}. Agora que eu entendi e compreendi. Agora o item II ficou mais facil de entender.
II- SE \frac{B}{{A}^{C}} = B\cap A. então como {A}^{C} = U então B-U= \varnothing e como a A\cap B ou B\cap A = \varnothing eu entendi que essa igualdade é verdadeira !!!
VALEWW Por me exclicar direitinho fraol . Fica com DEUS :) !
moyses
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Seg Ago 29, 2011 09:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: SISTEMA DE INFORMAÇÃO
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D