• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Número de Conjuntos

Número de Conjuntos

Mensagempor gustavowelp » Dom Jun 19, 2011 12:00

Bom dia.

Estou com uma dúvida no enunciado desta questão:

O número de conjuntos X que satisfazem [1;2] \subset X \subset [1;2;3;4] é:

A resposta é 4, mas não entendi o enunciado.
Os números 1 e 2 estão contidos em X, ou seja, X tem esses elementos. Mas X estar contido em 1, 2, 3 e 4... É só para complicar? 3 e 4 não fazem parte de X?

Por isso que se faz {2}^{n} para sabermos o número de subconjuntos? E no caso ficaram só os números 1 e 2? Acho que é isso.

Obrigado
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Número de Conjuntos

Mensagempor Molina » Dom Jun 19, 2011 15:19

Boa tarde.

Você deve estar confundindo a pergunta. Ele não quer saber quanto elementos há no conjunto X e sim, quantas possibilidades há para X.

Perceba que X será sempre formados pelos elementos 1 e 2. Agora temos que encontrar as outras opções para X. Perceba que todas abaixo satisfazem a condição inicial:

[1;2] \subset [1;2] \subset [1;2;3;4]

[1;2] \subset [1;2;3] \subset [1;2;3;4]

[1;2] \subset [1;2;4] \subset [1;2;3;4]

[1;2] \subset [1;2;3;4] \subset [1;2;3;4]

Ou seja, quatro opções.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59