• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação irracional] Questão da EPCAR

[Equação irracional] Questão da EPCAR

Mensagempor -daniel15asv » Sex Ago 03, 2012 17:16

A equação x = \sqrt[2]{3x+a²+3a} , em que x é a incógnita e a \in IR tal que a<-3, possui conjunto solução S, S\subset IR.
Sobre S tem-se as seguintes proposições.
I) Possui exatamente dois elementos.
II) Não possui elemento menor que 2.
III) Possui elemento maior que 3.

Sobre as proposições acima, são verdadeiras.

a) apenas I e II c) apenas II e III
b) apenas I e III d) I, II e III

No gabarito ta c mas eu achei b

Veja se eu estou certo !
x= \sqrt[2]{3x+a²+3a} é uma raiz, logo x ? 0 . Elevando ao quadrado:
x² ? 3x ? a(a + 3) = 0 ? x = ?a ou x = a + 3 . Substituindo a por valores possíveis que é a<-3

(I) Possui exatamente dois elementos (V)
(II) Não possui elemento menor que 2. (F)
(III) Possui elemento maior que 3. (V)
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação irracional] Questão da EPCAR

Mensagempor DanielFerreira » Sáb Ago 04, 2012 00:22

Daniel,
boa noite!
A equação não ficou muito clara. Confirma por favor se é x = \sqrt{3x + a^2 + 3a}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação irracional] Questão da EPCAR

Mensagempor -daniel15asv » Sáb Ago 04, 2012 00:36

É isso mesmo danjr
-daniel15asv
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Ago 02, 2012 19:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação irracional] Questão da EPCAR

Mensagempor DanielFerreira » Sex Ago 17, 2012 21:40

\\x = \sqrt{3x + a^2 + 3a} \\ x^2 = 3x + a^2 + 3a \\ x^2 - 3x - a^2 - 3a = 0 \\ \Delta = 9 - 4(- a^2 - 3a) \\ \Delta = 4a^2 + 12a + 9 \\ \Delta = (2a + 3)^2 \\\\ x' = \frac{3 + 2a + 3}{2} \rightarrow \boxed{x' = a + 3} \\\\ x'' = \frac{3 - 2a - 3}{2} \rightarrow \boxed{x'' = - a}

A princípio, S = \left \{a + 3, - a}{  \right \}, mas, devemos fazer a verificação.

Analisemos quando:
\star \boxed{x = a + 3}, sabemos que a = \left \{..., - 6, - 5, - 4}{  \right \}, então x = \left \{..., - 3, - 2, - 1}{  \right \}.

Substituindo os respectivos valores de a e x na equação inicial x = \sqrt{3x + a^2 + 3a}, pode-se notar que É FALSA, veja:

\\(- 1) = \sqrt{ 3 \cdot (- 1) + (- 4)^2 + 3 \cdot (- 4)} \Rightarrow - 1 = \sqrt{1} \Rightarrow \boxed{- 1 = 1}

\\(- 2) = \sqrt{ 3 \cdot (- 2) + (- 5)^2 + 3 \cdot (- 5)} \Rightarrow - 2 = \sqrt{4} \Rightarrow \boxed{- 2 = 2}

\left ( ... \right )


\star \boxed{x = - a}, como a = \left \{..., - 6, - 5, - 4}{  \right \}, então x = \left \{..., 6, 5, 4}{  \right \}.

Substituindo os respectivos valores de a e x na equação, nota-se que É VERDADEIRA, veja:

\\(4) = \sqrt{ 3 \cdot (4) + (- 4)^2 + 3 \cdot (- 4)} \Rightarrow 4 = \sqrt{16} \Rightarrow \boxed{4 = 4}

\\(5) = \sqrt{ 3 \cdot (5) + (- 5)^2 + 3 \cdot (- 5)} \Rightarrow 5 = \sqrt{25} \Rightarrow \boxed{5 = 5}

\left ( ... \right )

Pode-se concluir que \boxed{\boxed{S = \left \{4, 5, 6, 7, ...}}{  \right \} }}

Desculpe a demora.

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}