por Toni » Qua Dez 30, 2015 15:21
Olá gente! Tentei de todas as formas montar uma equação para o problema abaixo, mas não conseguir de jeito nenhum. Por favor, me ajudem a saber como interpretar e como montar a equação.
Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais.
Verificou-se ao final, que para arcar com todas as despesas, faltavam R$ 510,00, e 5 novas pessoas haviam ingressado no grupo.
No acerto foi decidido que a despesa total seria dividida em partes iguais pelas 55 pessoas. Quem não havia contribuído pagaria a sua parte, e
cada uma das 50 pessoas do grupo inicial deveria contribuir com mais R$ 7,00.
De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
-
Toni
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Dez 30, 2015 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Dom Fev 07, 2016 20:46
Olá
Toni, seja bem-vindo!!
Se considerarmos

o valor previsto a ser pago pelas 50 pessoas, então podemos concluir que a quantia a ser paga por cada uma delas é dada por

.
Mas, de acordo com o enunciado, devemos acrescentar R$ 510,00 e 5 pessoas às despesas. Aplicando o mesmo raciocínio acima, temos que: o valor gasto fora

, portanto, cada uma dessas pessoas deverá arcar com

.
Por fim, fazemos: 50 . (valor gasto por cada integrante do grupo inicial + R$ 7,00) + 5 . (valor gasto por cada integrante do NOVO grupo) = valor total gasto
Matematicamente,

.
Tente concluir o exercício. A propósito, deve encontrar
R$ 32,00 como resposta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- problema de 1° grau
por heroncius » Sex Set 07, 2007 11:44
- 2 Respostas
- 5613 Exibições
- Última mensagem por heroncius

Sáb Set 08, 2007 20:52
Sistemas de Equações
-
- problema 1° grau
por heroncius » Dom Set 23, 2007 19:43
- 1 Respostas
- 2149 Exibições
- Última mensagem por admin

Seg Set 24, 2007 01:31
Equações
-
- problema de 1º grau
por malbec » Seg Set 03, 2012 15:51
- 1 Respostas
- 1604 Exibições
- Última mensagem por Russman

Seg Set 03, 2012 16:50
Aritmética
-
- problema do 1º grau
por malbec » Qui Nov 29, 2012 10:09
- 1 Respostas
- 1570 Exibições
- Última mensagem por Cleyson007

Qui Nov 29, 2012 10:55
Aritmética
-
- Problema do segundo grau
por Alessandra Cezario » Seg Mai 02, 2011 16:52
- 1 Respostas
- 2904 Exibições
- Última mensagem por TheoFerraz

Seg Mai 02, 2011 17:29
Problemas do Cotidiano
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.