• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação de Girard

Relação de Girard

Mensagempor SandraRB » Seg Nov 03, 2014 20:52

Por favor, não consigo resolver a situação abaixo. Não sei como aplicar as Relações de Girard nisso.
Dada a equação algébrica 3{x}^{3}-6{x}^{2}+3x-1=0 , as raízes são representadas por \alpha, \beta e \gamma. Calcule {\alpha}^{2}+{\beta}^{2}+{\gamma}^{2}
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Relação de Girard

Mensagempor Russman » Ter Nov 04, 2014 01:28

Escrevendo as raízes como x_1, x_2 e x_3 sabemos que
x_1+x_2+x_3 = -\frac{b}{a}

Ou seja, (x_1+x_2+x_3)^2 = \frac{b^2}{a^2}

de onde

x_1^2+x_2^2+x_3^2 + 2x_1x_2 + 2x_1x_3+2x_2x_3 =\frac{b^2}{a^2}

ou, já que x_1x_2 + x_1x_3 + x_2x_3 = \frac{c}{a},

(x_1^2+x_2^2+x_3^2) + 2*\frac{c}{a} = \frac{b^2}{a^2}

e, portanto,

x_1^2+x_2^2+x_3^2 = \frac{b^2}{a^2} - 2*\frac{c}{a}

Da equação, x_1^2+x_2^2+x_3^2 = 2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Relação de Girard

Mensagempor SandraRB » Ter Nov 04, 2014 19:47

Russman escreveu:Escrevendo as raízes como x_1, x_2 e x_3 sabemos que
x_1+x_2+x_3 = -\frac{b}{a}

Ou seja, (x_1+x_2+x_3)^2 = \frac{b^2}{a^2}

de onde

x_1^2+x_2^2+x_3^2 + 2x_1x_2 + 2x_1x_3+2x_2x_3 =\frac{b^2}{a^2}

ou, já que x_1x_2 + x_1x_3 + x_2x_3 = \frac{c}{a},

(x_1^2+x_2^2+x_3^2) + 2*\frac{c}{a} = \frac{b^2}{a^2}

e, portanto,

x_1^2+x_2^2+x_3^2 = \frac{b^2}{a^2} - 2*\frac{c}{a}

Da equação, x_1^2+x_2^2+x_3^2 = 2.


Muito Obrigada!
SandraRB
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 01, 2014 18:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)