• Anúncio Global
    Respostas
    Exibições
    Última mensagem

número de apartamentos

número de apartamentos

Mensagempor dandara » Ter Set 23, 2014 14:48

Uma empresa de engenharia está construindo um prédio, no qual todos os andares terão o mesmo número de apartamentos. Sabe-se que o número de andares é igual ao triplo do número de apartamentos mais 2. Se o total de apartamentos nesse prédio é igual a 56, o número de apartamentos por andar que estão sendo construídos é...
dandara
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 23, 2014 14:37
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: número de apartamentos

Mensagempor nakagumahissao » Qui Set 25, 2014 02:10

Sabe-se que o número de andares é igual ao triplo do número de aptos. mais 2. Isto quer dizer que:

Seja n o número de apartamentos e a o número de andares. Tem-se que:

a = 3n + 2

Tomando-se t como sendo o total de apartamentos e considerando que o total de aptos. nesse prédio é 56, tem-se:

t = 56 = a * n = (3n + 2).n =

= 3{n}^{2} + 2n = 56

3{n}^{2} + 2n - 56 = 0

\Delta = 4 + 672 = 676

n = \frac{-2 \pm \sqrt[]{\Delta}}{6} =  \frac{-2 \pm 26}{6}

{n}_{1} = -\frac{28}{6}

{n}_{2} = \frac{24}{6} = 4

Como números negativos não nos interessam, n assume o valor de 4.

Logo, de a = 3n + 2 => a = 12 + 2 = 14

O Número de Andares é portanto 14 e o número de apartamentos por andar é 4, que é a quantidade procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.