• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Intrigante equação exponencial

Intrigante equação exponencial

Mensagempor PeterHiggs » Sex Mai 03, 2013 23:41

Determine todas as soluções reais da equação

\frac{8^x+27^x}{12^x+18^x}=\frac{7}{6}

Tentei resolver da seguinte forma:

\frac{(2^x)^3 + (3^x)^3}{((2^x)^2)*(3^x)+((3^x)^2)*(2^x)}=\frac{7}{6}

* Fazendo 2^x = y, e 3^x = z

\frac{(y^3)+(z^3)}{(y^2)(z)+(y)(z^2)}=\frac{7}{6} \Rightarrow  \frac{(y+z)((y^2)-yz+z)}{yz(y+z)}=\frac{7}{6}

6y^2-6yz+6z-7yz = 0 \Rightarrow 6y^2-13yx + 6z=0 \Rightarrow

Resolvendo a equação do 2° grau em função de y, obtemos: y' = 9z, e y'' = 4z

Tentei resolver, usando esses valores, para resolver a equação exponencial e encontrei valores estranhos, sem sentido

* Por exemplo, no 1° caso, para y=9z >>> z = 0 (y = 0) e >>>> 3^x = 0, onde x real não existe.
* No 2° caso, para y = 4z >>>> obtenho uma equação que não possui resultado (sentença impossível).

Será que alguém poderia me ajudar, e me dar uma sugestão para que eu consiga resolver esse problema ?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Intrigante equação exponencial

Mensagempor DanielFerreira » Dom Mai 05, 2013 13:54

\\ \frac{8^x + 27^x}{12^x + 18^x} = \frac{7}{6} \\\\\\ \frac{(2^3)^x + (3^3)^x}{(2^2 \cdot 3)^x + (2 \cdot 3^2)^x} = \frac{7}{6} \\\\\\ \frac{2^{3x} + 3^{3x}}{2^{2x} \cdot 3^x + 2^x \cdot 3^{2x}} = \frac{7}{6} \\\\\\ \frac{y^3 + z^3}{y^2z + yz^2} = \frac{7}{6} \\\\\\ \frac{(y + z)(y^2 - yz + z^2)}{yz(y + z)} = \frac{7}{6} \\\\\\ \frac{\cancel{(y + z)}(y^2 - yz + z^2)}{yz\cancel{(y + z)}} = \frac{7}{6}

\\ 6(y^2 - yz + z^2) = 7yz \\ 6y^2 - 6yz + 6z^2 - 7yz = 0 \\ 6y^2 - 13zy + 6z^2 = 0 \\ \Delta = 169z^2 - 144z^2 \Rightarrow \Delta = 25z^2 \\\\ y = \frac{- b \pm \sqrt{\Delta }}{2a} \Rightarrow y = \frac{13z \pm 5z}{12} \\\\ \begin{cases} y' = \frac{13z + 5z}{12} \Rightarrow y' = \frac{18z^{\div 6}}{12^{\div 6}} \Rightarrow \boxed{y' = \frac{3z}{2}} \\ y'' = \frac{13z - 5z}{12} \Rightarrow y'' = \frac{8z^{\div 4}}{12^{\div 4}} \Rightarrow \boxed{y'' = \frac{2z}{3}} \end{cases}


Lembrando que fizemos \begin{cases} 2^x = y \\ 3^x = z \end{cases}, então, encontremos o valor de x usando a raiz y';

Segue,

\\ y' = \frac{3z}{2} \Rightarrow 2^x = \frac{3 \cdot 3^x}{2} \Rightarrow \frac{2^x}{3^x} = \frac{3}{2} \Rightarrow \left ( \frac{2}{3} \right )^x = \left ( \frac{2}{3} \right )^{- 1} \Rightarrow \boxed{\boxed{x = - 1}}

Encontremos agora o valor de x usando a raiz y'';

Segue,

y'' = \frac{2z}{3} \Rightarrow 2^x = \frac{2 \cdot 3^x}{3} \Rightarrow \frac{2^x}{3^x} = \frac{2}{3} \Rightarrow \left ( \frac{2}{3} \right )^x = \left ( \frac{2}{3} \right )^1 \Rightarrow \boxed{\boxed{x = 1}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Intrigante equação exponencial

Mensagempor PeterHiggs » Seg Mai 06, 2013 08:29

Muito obrigado. Ajudou bastante!
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?