• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do Segundo grau

Equação do Segundo grau

Mensagempor Damaris Ribeiro » Sex Abr 19, 2013 22:21

Alguém poderia me ajuda nessa questão :\

Determine m para que a equação do segundo grau (2m+1)x^2+2x+m+1=0 tenha raízes reais tais que 0<x1<x2<4

Gabatiro : -3/2<m<-1
Damaris Ribeiro
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Abr 18, 2013 12:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação do Segundo grau

Mensagempor e8group » Sáb Abr 20, 2013 01:33

Vamos aplicar a fórmula resolvente p/ equação do segundo grau ,

x_{1,2} = \frac{- 2 \pm \sqrt{4 -4(2m+1)(m+1)}}{2(2m+1)} = \frac{-1 \pm\sqrt{1 -(2m+1)(m+1)}}{2m+1} .

(a)
\frac{-1 -\sqrt{1 -(2m+1)(m+1)}}{2m+1}

(b)
\frac{-1 +\sqrt{1 -(2m+1)(m+1)}}{2m+1} .

Os itens (a) e (b) são raízes da equação .

Como ambas soluções da equação são positivas ,por(a) vemos que obrigatoriamente2m+1 < 0 \iff m \in I_1 =(-\infty ,-1/2) (Por quê ?) .Assim ,como 2m+1 < 0 então -1 +\sqrt{1 -(2m+1)(m+1)} < 0 .Desta forma, além de termos que impor que 1 -(2m+1)(m+1) > 0 (já que há duas soluções distintas p/ equação) teremos também que tomar 1 > 1 -(2m+1)(m+1) .

Assim ,

1 -(2m+1)(m+1) > 0  \iff 0 > m > -3/2 \iff m \in I_2 = (-3/2,0) (Por favor ,faça as contas)

e

1 > 1 -(2m+1)(m+1) \iff m > -1/2 \ \text{ou} \  m < -1  \iff m \in I_3 = (-\infty,-1)\cup(-1/2,+\infty)
(Por favor ,faça as contas) .

Concluímos que m \in I_1 \cap I_2 \cap I_3 = (-3/2,-1) , ou seja ,para qualquer -3/2 <m <-1 \implies 0 < x_1 < x_2 < 4 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação do Segundo grau

Mensagempor e8group » Sáb Abr 20, 2013 02:53

Outra ...
Alternativamente ,pela soma S = -b/a e produto P = c/a das raízes em que a = 2m+1  , b = 2 e c = m+1 .Pela restrição ,

0 < x_1 < x_2 < 4 obtemos que ,


x_1 + x_2 > 0

e

x_1 \cdot x_2 > 0

Assim ,por soma e produto das raízes ,


x_1 + x_2= -2/(2m+1) > 0  \iff 2m+1 < 0 \iff m <-1/2 .


e

x_1 \cdot x_2 = (m+1)/(2m+ 1) > 0 que devido a m  +1/2< 0 implica m+1 < 0 e portanto m < -1 .

Para finalizar ,uma vez que há duas soluções reais e distintas ,então o discriminante b^2 -4ac= 4 - 4(2m+1)(m+1)> 0  \implies 0 > (2m+1)(m+1) - 1 = 2m^2 +3m = m(2m+3) .
Como m < - 1 ,o produto m(2m+3) é negativo sse 2m + 3 > 0 . Desenvolvendo segue o resultado do gabarito .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.