por Thais Bomfim » Qua Dez 12, 2012 01:58
Seja a equaçao diferencial: y² dx + (xy + 1) dy = 0. Considere y > 0.
a) Mostre que a equaçao diferencial não é exata.
b)Determine o fator integrante.
c) Resolva a equaçao diferencial dada, transformando-a em exata atraves do fator integrante.
-
Thais Bomfim
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Dez 12, 2012 01:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
por young_jedi » Qua Dez 12, 2012 11:39
partindo da equação

podemos dividir tudo por dy

agora dividindo tudo por



o fator integrante sera


multiplicando a equação pelo fator integrante

então a equação ficaria exata e poderia ser escrita como

lembrando que a derivada é em relação a y (e não a x como de costume)
agora é so aplicar integral com relação a y e resolver
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Thais Bomfim » Qua Dez 12, 2012 14:02
Muito obrigada pela ajuda!
-
Thais Bomfim
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Dez 12, 2012 01:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Ambiental
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equações diferenciais
por tiagofabre » Sex Set 21, 2012 00:48
- 1 Respostas
- 1863 Exibições
- Última mensagem por MarceloFantini

Sex Set 21, 2012 01:14
Cálculo: Limites, Derivadas e Integrais
-
- Equações Diferenciais
por sergio2205 » Qua Mar 06, 2013 13:27
- 1 Respostas
- 1737 Exibições
- Última mensagem por Russman

Qua Mar 06, 2013 15:14
Equações
-
- Equações Diferenciais
por marinalcd » Sex Ago 09, 2013 15:19
- 1 Respostas
- 1635 Exibições
- Última mensagem por Man Utd

Dom Jun 15, 2014 17:40
Cálculo: Limites, Derivadas e Integrais
-
- Equações Diferenciais
por FernandaOliveira » Dom Ago 25, 2013 20:42
- 1 Respostas
- 1666 Exibições
- Última mensagem por FernandaOliveira

Qua Ago 28, 2013 16:41
Equações
-
- Equações Diferenciais
por FernandaOliveira » Dom Ago 25, 2013 20:52
- 1 Respostas
- 1218 Exibições
- Última mensagem por young_jedi

Seg Ago 26, 2013 16:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.