• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema do 1º grau.

Problema do 1º grau.

Mensagempor Toni » Qua Dez 30, 2015 15:21

Olá gente! Tentei de todas as formas montar uma equação para o problema abaixo, mas não conseguir de jeito nenhum. Por favor, me ajudem a saber como interpretar e como montar a equação.

Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais.
Verificou-se ao final, que para arcar com todas as despesas, faltavam R$ 510,00, e 5 novas pessoas haviam ingressado no grupo.
No acerto foi decidido que a despesa total seria dividida em partes iguais pelas 55 pessoas. Quem não havia contribuído pagaria a sua parte, e
cada uma das 50 pessoas do grupo inicial deveria contribuir com mais R$ 7,00.

De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
Toni
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 30, 2015 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema do 1º grau.

Mensagempor DanielFerreira » Dom Fev 07, 2016 20:46

Olá Toni, seja bem-vindo!!

Se considerarmos x o valor previsto a ser pago pelas 50 pessoas, então podemos concluir que a quantia a ser paga por cada uma delas é dada por \frac{x}{50}.

Mas, de acordo com o enunciado, devemos acrescentar R$ 510,00 e 5 pessoas às despesas. Aplicando o mesmo raciocínio acima, temos que: o valor gasto fora x + 510, portanto, cada uma dessas pessoas deverá arcar com \frac{x + 510}{55}.

Por fim, fazemos: 50 . (valor gasto por cada integrante do grupo inicial + R$ 7,00) + 5 . (valor gasto por cada integrante do NOVO grupo) = valor total gasto

Matematicamente, 50 \cdot (\frac{x}{50} + 7) + 5 \cdot (\frac{x + 510}{55}) = x + 510.

Tente concluir o exercício. A propósito, deve encontrar R$ 32,00 como resposta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59