por manoelcarlos » Sex Ago 23, 2013 01:13
Pessoal, boa noite;
Estou relembrando agora o mundo das equações do segundo grau - dez anos após ter passado pelo colegial, e estou com dificuldade em resolver a seguinte equação:

Eu cheguei no resultado correto, mas não sei se usei o método certo para alcançá-lo. Eis o que fiz:
MMC de x-2 e x+2 => (x-2)(x+2) --- Isso é certo?
x (x+2) + x + 2 = x (x-2) -1 (x-2) --- coloquei aqui todos os termos
x² + 2x + x + 2 = x² - 2x - x + 2 --- aqui alguns termos resolvidos (com a distributiva)
x² - x² + 2x + x + 2 = -2x - x + 2 --- passei o x² para o primeiro termo e o excluí (x² - x² = 0)
2x + x + 2 = -2x - x + 2
3x + 2 = -3x + 2 (os termos com x resolvidos)
3x + 3x = 2 - 2
6x = 0
x = 0 (resultado)
Eu cheguei nesse resultado resolvendo a equação meio que por "osmose", utilizando o único método que conheço. Eu fiz do jeito que "sei" e cheguei num resultado. Alguém pode me indicar alguma outra forma de se resolver essa equação ou a forma como resolvi é a única?
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Luis Gustavo » Sex Ago 23, 2013 13:47
Acho que o modo como você resolveu está correto sim, zero me parece a única solução (:
-
Luis Gustavo
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Seg Mai 06, 2013 15:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por manoelcarlos » Seg Ago 26, 2013 00:59
Luis Gustavo escreveu:Acho que o modo como você resolveu está correto sim, zero me parece a única solução (:
Obrigado pela resposta, Luis Gustavo. Mas ainda resta uma dúvida: há alguma outra forma de resolver essa equação?
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Seg Ago 26, 2013 02:48
Você não precisa calcular o mmc. Note que se

então é verdade também que

. Este é o famoso "multiplicar cruzado".
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quebrando a cabeça ate agora :/
por Amandatkm » Dom Abr 28, 2013 17:48
- 8 Respostas
- 4190 Exibições
- Última mensagem por Amandatkm

Ter Abr 30, 2013 15:03
Equações
-
- [Gráfico de função] Tô quebrando a cabeça
por gu21n » Dom Ago 17, 2014 17:03
- 1 Respostas
- 1341 Exibições
- Última mensagem por Russman

Dom Ago 17, 2014 21:53
Funções
-
- [derivadas ]essa derivada já ta esquentando minha cabeça.
por vinicastro » Sáb Dez 15, 2012 22:42
- 5 Respostas
- 2989 Exibições
- Última mensagem por vinicastro

Dom Dez 16, 2012 15:57
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Quebrando cabeça para resolver uma integral
por MrJuniorFerr » Dom Dez 16, 2012 16:20
- 3 Respostas
- 2464 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 18:59
Cálculo: Limites, Derivadas e Integrais
-
- Equação - Dúvida básica sobre a proporcionalidade de equação
por FelipeGM » Qui Jan 12, 2012 19:05
- 4 Respostas
- 7719 Exibições
- Última mensagem por FelipeGM

Sáb Jan 14, 2012 13:16
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.