por manoelcarlos » Sex Ago 23, 2013 01:13
Pessoal, boa noite;
Estou relembrando agora o mundo das equações do segundo grau - dez anos após ter passado pelo colegial, e estou com dificuldade em resolver a seguinte equação:

Eu cheguei no resultado correto, mas não sei se usei o método certo para alcançá-lo. Eis o que fiz:
MMC de x-2 e x+2 => (x-2)(x+2) --- Isso é certo?
x (x+2) + x + 2 = x (x-2) -1 (x-2) --- coloquei aqui todos os termos
x² + 2x + x + 2 = x² - 2x - x + 2 --- aqui alguns termos resolvidos (com a distributiva)
x² - x² + 2x + x + 2 = -2x - x + 2 --- passei o x² para o primeiro termo e o excluí (x² - x² = 0)
2x + x + 2 = -2x - x + 2
3x + 2 = -3x + 2 (os termos com x resolvidos)
3x + 3x = 2 - 2
6x = 0
x = 0 (resultado)
Eu cheguei nesse resultado resolvendo a equação meio que por "osmose", utilizando o único método que conheço. Eu fiz do jeito que "sei" e cheguei num resultado. Alguém pode me indicar alguma outra forma de se resolver essa equação ou a forma como resolvi é a única?
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Luis Gustavo » Sex Ago 23, 2013 13:47
Acho que o modo como você resolveu está correto sim, zero me parece a única solução (:
-
Luis Gustavo
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Seg Mai 06, 2013 15:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por manoelcarlos » Seg Ago 26, 2013 00:59
Luis Gustavo escreveu:Acho que o modo como você resolveu está correto sim, zero me parece a única solução (:
Obrigado pela resposta, Luis Gustavo. Mas ainda resta uma dúvida: há alguma outra forma de resolver essa equação?
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Seg Ago 26, 2013 02:48
Você não precisa calcular o mmc. Note que se

então é verdade também que

. Este é o famoso "multiplicar cruzado".
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quebrando a cabeça ate agora :/
por Amandatkm » Dom Abr 28, 2013 17:48
- 8 Respostas
- 3921 Exibições
- Última mensagem por Amandatkm

Ter Abr 30, 2013 15:03
Equações
-
- [Gráfico de função] Tô quebrando a cabeça
por gu21n » Dom Ago 17, 2014 17:03
- 1 Respostas
- 1219 Exibições
- Última mensagem por Russman

Dom Ago 17, 2014 21:53
Funções
-
- [derivadas ]essa derivada já ta esquentando minha cabeça.
por vinicastro » Sáb Dez 15, 2012 22:42
- 5 Respostas
- 2766 Exibições
- Última mensagem por vinicastro

Dom Dez 16, 2012 15:57
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Quebrando cabeça para resolver uma integral
por MrJuniorFerr » Dom Dez 16, 2012 16:20
- 3 Respostas
- 2286 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 18:59
Cálculo: Limites, Derivadas e Integrais
-
- Equação - Dúvida básica sobre a proporcionalidade de equação
por FelipeGM » Qui Jan 12, 2012 19:05
- 4 Respostas
- 7431 Exibições
- Última mensagem por FelipeGM

Sáb Jan 14, 2012 13:16
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.