por anneliesero » Ter Jul 23, 2013 23:47
Olá, pessoal
nesta questão alguém pode explicar como cortou os números e letras me confundi toda neste cálculo.
Questão:
![{3}^{x}+\frac{1}{{3}^{x}}=\frac{4\sqrt[2]{3}}{3} {3}^{x}+\frac{1}{{3}^{x}}=\frac{4\sqrt[2]{3}}{3}](/latexrender/pictures/398523d6c99a808de9d82e355986c9ae.png)
Desenvolvimento:
I) [tex]\frac{4\sqrt[]{3}+- ({-4\sqrt[]{3y})}^{2} -4.3{y}^{2}.3}{6{y}^{2}}
II) [tex]\frac{4\sqrt[]{3y}+-16\sqrt[]{9y}-36}{6}
III) [tex]\frac{4\sqrt[]{3y}+-\sqrt[]{9.16y}-36}{6}
IV) [tex]\frac{4\sqrt[]{3y}+-\sqrt[]{3.4y}-1}{6}
V) [tex]\frac{4\sqrt[]{3y}+-2\sqrt[]{3y}-1}{6}
VI) [tex]\frac{4\sqrt[]{3}+-2\sqrt[]{3}-1}{6}
O que posso ter errado no desenvolvimento da questão? Sendo que a resposta é [tex]\sqrt[]{3} OU [tex]\frac{\sqrt[]{3}}{3}?
Agradeço quem ajudar!
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
-
anneliesero
- Usuário Parceiro

-
- Mensagens: 86
- Registrado em: Qui Set 13, 2012 17:58
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Qua Jul 24, 2013 00:36
Não consegui entender seu desenvolvimento. Mas como você o tentou postar vou te ajudar. Veja que pra postar no formato TeX você tem que fechar a caixa [ tex]com [/ tex] .
Vamos a equação.
O primeiro passo é retirar o

, que é a incógnita, do denominador. Para facilitar a notação tome

de modo que uma vez calculado

podemos conhecer

. Assim,

No segundo passo tomamos

de modo que

Prosseguindo, chegamos a equação

que, via solução de equações de 2° grau, tem soluções

ou

.
Como

, então

.
Entende?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação exponencial???
por azheng » Sáb Nov 21, 2009 19:47
- 0 Respostas
- 1620 Exibições
- Última mensagem por azheng

Sáb Nov 21, 2009 19:47
Álgebra Elementar
-
- Equação Exponencial
por Adriana Baldussi » Seg Nov 23, 2009 14:41
- 3 Respostas
- 2825 Exibições
- Última mensagem por Molina

Seg Nov 23, 2009 17:07
Álgebra Elementar
-
- Equação Exponencial
por LeonardoSantos » Ter Fev 16, 2010 14:11
- 1 Respostas
- 2820 Exibições
- Última mensagem por Douglasm

Ter Fev 16, 2010 15:46
Funções
-
- Equação exponencial
por cristina » Sex Jun 04, 2010 20:19
- 1 Respostas
- 2237 Exibições
- Última mensagem por Mathmatematica

Sáb Jun 05, 2010 00:27
Sistemas de Equações
-
- Equação exponencial
por nan_henrique » Sáb Jul 10, 2010 13:00
- 1 Respostas
- 2184 Exibições
- Última mensagem por Douglasm

Sáb Jul 10, 2010 13:12
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.