por ALPC » Ter Jan 15, 2013 17:25
Olá, tenho uma dúvida sobre essa questão do Fuvest 2013:
Um empreiteiro contratou um serviço com um grupo de trabalhadores pelo valor de ?$ 10.800,00 a
serem igualmente divididos entre eles. Como três desistiram do trabalho, o valor contratado foi
dividido igualmente entre os demais. Assim, o empreiteiro pagou, a cada um dos trabalhadores que
realizaram o serviço, ?$ 600,00 além do combinado no acordo original.
a) Quantos trabalhadores realizaram o serviço?
b) Quanto recebeu cada um deles?
Eu até consigo iniciar, mas não consigo prosseguir com a questão:

Em um vídeo eu vi que depois disso isso daria uma
Equação do Segundo Grau, mas não mostrava como prosseguir depois disso. Então minha dúvida é:
Como prosseguir com a resolução desta questão?Não estou conseguindo.
Agradeço desde ja.
-

ALPC
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Jan 04, 2013 16:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Cleyson007 » Ter Jan 15, 2013 18:58
ALPC, seja bem-vindo(a) ao AjudaMatemática!
Vou te ajudar com a montagem das equações..
n = n° de trabalhadores que realizaram o serviço
v = valor recebido por cada um deles
R$ 10800,00 é a quantia recebida por cada um deles --> n.v = 10800 (I)
Número de trabalhadores (inicialmente) envolvolvidos no trabalho --> n + 3
Eles receberiam --> v - 600
(n + 3) (v - 600) = 10800 (II)
Agora basta resolver o sistema de equação para encontrar os valores de "n" e "v".
Abraço,
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por ALPC » Qua Jan 16, 2013 12:53
Obrigado amigo, eu compreendi e consegui continuar, meus resultados foram:
a: 6
b: 1800
-

ALPC
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Jan 04, 2013 16:26
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Cleyson007 » Qua Jan 16, 2013 14:12
Ok!
n = 6 e v = R$ 1800,00
Abraço,
Cleyson007
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do segundo grau
por VtinxD » Qui Jan 27, 2011 23:03
- 1 Respostas
- 3513 Exibições
- Última mensagem por douglaspezzin

Dom Jun 19, 2011 09:55
Desafios Médios
-
- Equação de segundo grau
por maria cleide » Seg Mai 09, 2011 23:46
- 3 Respostas
- 2295 Exibições
- Última mensagem por FilipeCaceres

Ter Mai 10, 2011 00:43
Sistemas de Equações
-
- Equação do segundo grau
por LuizCarlos » Qui Mai 10, 2012 13:01
- 3 Respostas
- 2328 Exibições
- Última mensagem por DanielFerreira

Sáb Mai 12, 2012 20:41
Álgebra Elementar
-
- Equação do segundo grau
por LuizCarlos » Sex Jun 15, 2012 16:14
- 5 Respostas
- 3206 Exibições
- Última mensagem por LuizCarlos

Sáb Jun 16, 2012 13:31
Álgebra Elementar
-
- equaçao de segundo grau
por will140592 » Dom Mar 03, 2013 11:40
- 1 Respostas
- 2149 Exibições
- Última mensagem por Russman

Dom Mar 03, 2013 19:45
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.