• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equaçao exponencial e equação do 2°

equaçao exponencial e equação do 2°

Mensagempor Debylow » Ter Dez 04, 2012 17:07

como resolvo ?

{3}^{{x}^{2}+3x}=\frac{1}{81}

cheguei até aqui , nao sei se esta certo: nao consegui resolver por bhaskara
{x}^{2}+3x+4=0
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: equaçao exponencial e equação do 2°

Mensagempor Russman » Ter Dez 04, 2012 19:20

A equação é:

3^{x^2 + 3x} = \frac{1}{81} .

Nessas equações exponenciais a técnica é igualar as bases, visto que assim os expoentes devem coincidir. Ou seja, se 3^x = 3^y então x=y.

Assim, como 81 = 9^2 = (3^2)^2 = 3^4 então \frac{1}{81} = \frac{1}{3^4} = 3^{-4} . Portanto,

3^{x^2 + 3x} = 3^{-4}

e assim x^2 + 3x = -4 de forma que x^2 + 3x +4 = 0. Resolvendo via Bháskara você deve encontrar duas raízes complexas.

A equação inicial não tem solução Real! Não existe nenhum número Real x que satisfaça 3^{x^2 + 3x} = \frac{1}{81} .
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}