por bra » Qua Mai 18, 2016 19:43
"Numa sala de aula com 37 alunos, pelo menos 4 deles fazem aniversário no mesmo mês. Por quê?"
A resposta a este problema foi dada pelo professor da seguinte forma: 37:12 = 3 + 1 (sendo 1 o resto da divisão entre alunos e meses do ano, logo: 37 = 12*3 + 1.)
Entretanto, qual a lógica disto? Como se pode afirmar isto com certeza? Numa mesma sala pode até, por mais improvável, ser que todos os alunos tenham nascido no mesmo mês! Quiça no mesmo dia! Alguém pode elucidar o porque desta afirmação?
Caso tenha postado em local inadequado ou qualquer outra coisa por favor me digam, li os protocolos iniciais para postar, mas mesmo assim é bom contar com a informação de vocês. Muito agradecido em adiantado!
-
bra
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mai 18, 2016 15:33
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Daniel Bosi » Qui Mai 19, 2016 09:20
Esse problema segue o que chamamos de princípio da casa dos pombos. Perceba o seguinte: o enunciado está afirmando que pelo menos, ou seja, no mínimo 4 alunos fazem aniversário em um mesmo mês, nesse cenário.
Se a sala tivesse 12 alunos, na "pior das hipóteses" cada aluno faria aniversário em um mês diferente, precisando de um mínimo de 13 alunos para ao menos 2 fazerem aniversário em um mesmo mês.
Se todos os 37 alunos tivessem nascido no mesmo mês o princípio continua valendo, pois há mais que 4 alunos fazendo aniversário em um mesmo mês.
-
Daniel Bosi
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Mai 16, 2016 21:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por bra » Qui Mai 19, 2016 10:22
Ah, ficou mais claro agora Daniel! Interessante, percebo que meu pensamento tem que estar mais focado e de preferência nem um pouco disperso para analisar situações matemáticas... e não só essas rsrsrs A situação então na verdade é que foi dada uma premissa e eu tenho que resolver de acordo com ela, e não pensar em possibilidades alheias à situação (pois a lógica a ser tratada é de acordo com ela), até porque, para chegar realmente a alguma conclusão é necessária alguma informação inicial, esta foi dada pelo enunciado. Quanto ao "princípio dos pombos" lerei a respeito.
Agradeço sua colaboração, me põe a pensar e compreender melhor como me é necessário focar bastante nas situações, matemáticas ou não. Legal!
-
bra
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Mai 18, 2016 15:33
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Viper » Sex Mar 01, 2019 16:14
bra escreveu:Ah, ficou mais claro agora Daniel! Interessante, percebo que meu pensamento tem que estar mais focado e de preferência nem um pouco disperso para analisar situações matemáticas... e não só essas rsrsrs A situação então na verdade é que foi dada uma premissa e eu tenho que resolver de acordo com ela, e não pensar em possibilidades alheias à situação (pois a lógica a ser tratada é de acordo com ela), até porque, para chegar realmente a alguma conclusão é necessária alguma informação inicial, esta foi dada pelo enunciado. Quanto ao "princípio dos pombos" lerei a respeito.Agradeço sua colaboração, me põe a pensar e compreender melhor como me é necessário focar bastante nas situações, matemáticas ou não. Legal!
Boa tarde Daniel, tive exatamente a mesma dúvida nessa questão, após procurar muito pela net fui achar através do seu questionamento aqui neste Fórum (e das respostas evidentemente), a resposta, ou melhor o entendimento desta questão.
Obrigado a ti e aos que responderam!

-
Viper
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Fev 28, 2019 21:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Voltando a estudar após aposentado
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Qual a lógica correta] Achar registros que excederam
por Xprata » Sex Jan 31, 2014 16:19
- 0 Respostas
- 9052 Exibições
- Última mensagem por Xprata

Sex Jan 31, 2014 16:19
Lógica
-
- [LÓGICA] simplificação lógica e leis de equivalência
por MatheusComp606 » Qua Ago 24, 2016 16:13
- 1 Respostas
- 5278 Exibições
- Última mensagem por adauto martins

Seg Ago 29, 2016 15:34
Lógica
-
- Lógica
por Neperiano » Qui Jun 19, 2008 16:48
- 17 Respostas
- 26079 Exibições
- Última mensagem por Neperiano

Sex Nov 11, 2011 15:51
Desafios Enviados
-
- lÓGICA
por Jaison Werner » Qui Set 15, 2011 11:28
- 2 Respostas
- 3401 Exibições
- Última mensagem por Neperiano

Qui Nov 10, 2011 15:31
Lógica e Conjuntos
-
- Lógica
por Pstefani » Ter Set 20, 2011 19:56
- 1 Respostas
- 2429 Exibições
- Última mensagem por MarceloFantini

Ter Set 20, 2011 21:40
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.