por marcosdeiverson » Sex Jul 10, 2015 13:51
Caros amigos, não consigo simplificar a seguinte expressão:

para chegar nesta :

Tentei de varias maneiras , mas não consegui chegar a esse resultado. Se alguém puder me ajudar agradeço.
-
marcosdeiverson
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Jul 10, 2015 13:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por nakagumahissao » Sáb Jul 11, 2015 11:49
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Potenciação Propriedades
por anneliesero » Seg Out 01, 2012 17:24
- 1 Respostas
- 1822 Exibições
- Última mensagem por Cleyson007

Seg Out 01, 2012 18:29
Álgebra Elementar
-
- Propriedades de Potenciação.
por jramiresbrito » Qui Mai 05, 2016 17:58
- 4 Respostas
- 2631 Exibições
- Última mensagem por jramiresbrito

Sex Mai 06, 2016 20:48
Álgebra Elementar
-
- [potenciação] raiz cúbica com potenciação
por JKS » Qua Mar 06, 2013 17:41
- 2 Respostas
- 2095 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:43
Álgebra Linear
-
- [potenciação] módulo com potenciação
por JKS » Qua Mar 06, 2013 17:54
- 2 Respostas
- 1607 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:53
Equações
-
- propriedades de raiz
por theSinister » Ter Jun 21, 2011 22:04
- 10 Respostas
- 6276 Exibições
- Última mensagem por theSinister

Qua Jun 22, 2011 16:16
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.