por Antonio Unwisser » Sáb Ago 30, 2014 21:36
Olá, boa noite. Espero q eu esteja postando na seção correta.
Venho humildemente pedir ajuda num exercício de fatoração desta lista:
http://www.profcardy.com/cardicas/exerc ... a_02_1.htm.
Trata-se do exercício 3: Fatore

- 4x + 4 + 3 (x - 2) (x + 1). A resposta, julgando pelo gabarito, seria a alternativa "D".
Sei que o primeiro fator da expressão (

- 4x + 4) trata-se do quadrado da diferença de X e 2 (

); mas simplesmente não consigo resolver 3(x - 2) (x + 1). Apliquei a distributiva em 3(x - 2) e cheguei a (3x - 6), que em seguida multipliquei por (x + 1), ficando então com 3

+ 3x - 6x - 6 e, consequentemente,
3

- 3x - 6 (espero que eu tenha procedido de forma correta; fiquei com dúvida na questão da estrutura básica da expressão por se tratar de duas operações de mesma força simultâneas). Fatorei essa expressão e obtive 3(

- x - 2). E agora não sei como proceder. Tentei aplicar o método de achar quadrados nesta expressão, mas só me confundi.
Espero que não tenha cometido nenhum erro muito crasso. Muito obrigado pela atenção e, sinceramente, perdoem minha ignorância.
-
Antonio Unwisser
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 30, 2014 20:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Filosofia
- Andamento: cursando
por DanielFerreira » Sáb Ago 30, 2014 22:41
Olá
Antônio,
boa noite e seja bem-vindo!
O intuito do Fórum é ajudar.
Podes resolvê-lo da seguinte forma:
![\\ x^2 - 4x + 4 + 3(x - 2)(x + 1) = \\\\ (x - 2)^2 + 3(x - 2)(x + 1) = \\\\ (x - 2)(x - 2) + 3(x - 2)(x + 1) = \\\\ (x - 2)[(x - 2) + 3(x + 1)] = \\\\ (x - 2)[x - 2 + 3x + 3] = \\\\ \boxed{(x - 2)(4x + 1)} \\ x^2 - 4x + 4 + 3(x - 2)(x + 1) = \\\\ (x - 2)^2 + 3(x - 2)(x + 1) = \\\\ (x - 2)(x - 2) + 3(x - 2)(x + 1) = \\\\ (x - 2)[(x - 2) + 3(x + 1)] = \\\\ (x - 2)[x - 2 + 3x + 3] = \\\\ \boxed{(x - 2)(4x + 1)}](/latexrender/pictures/026dafed9640ba74651d71eee4e8730a.png)
O "truque" foi ter colocado o fator

em evidência, uma vez que é comum aos dois termos.
Qualquer dúvida, retorne!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Antonio Unwisser » Sáb Ago 30, 2014 23:12
Muito obrigado, danjr. Agradeço imensamente a presteza e gentileza.
Meu erro foi achar que o único jeito possível de se desenvolver

seria no jeito tradicional:

+ 2.a.b +

.
Tenha uma ótima noite. Abraços.
-
Antonio Unwisser
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 30, 2014 20:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Filosofia
- Andamento: cursando
por DanielFerreira » Dom Set 07, 2014 21:22
Não há de quê Antônio!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [fatoração] Exercício de Fatoração
por Cleyson007 » Qua Abr 30, 2008 00:39
- 3 Respostas
- 8706 Exibições
- Última mensagem por admin

Qua Abr 30, 2008 02:15
Álgebra Elementar
-
- Exercício de fatoração
por Sobreira » Sex Ago 09, 2013 18:21
- 0 Respostas
- 868 Exibições
- Última mensagem por Sobreira

Sex Ago 09, 2013 18:21
Álgebra Elementar
-
- Ajuda em exercício de fatoração
por Luiz Antonio Jr » Qui Mar 03, 2011 12:45
- 7 Respostas
- 3742 Exibições
- Última mensagem por LuizAquino

Qua Mar 23, 2011 10:45
Polinômios
-
- POR FAVOR ME AJUDEM NESTE EXERCÍCIO DE FATORAÇÃO
por Claudia Sotero » Sáb Nov 21, 2009 22:09
- 4 Respostas
- 4708 Exibições
- Última mensagem por jonathan carvalho

Dom Nov 22, 2009 12:27
Cálculo: Limites, Derivadas e Integrais
-
- [Fatoração] Não estou conseguindo resolver esse exercício
por Ze Birosca » Qua Fev 04, 2015 18:55
- 4 Respostas
- 2810 Exibições
- Última mensagem por Ze Birosca

Qua Fev 04, 2015 21:56
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.