• Anúncio Global
    Respostas
    Exibições
    Última mensagem

mat para o fundamental: prova

mat para o fundamental: prova

Mensagempor Victor Gabriel » Ter Abr 23, 2013 18:15

Olá pessoal tem alguém que possa mim dizer se estou certo ou não.
Olha só. A questão pedi para mim prova que:
\left|a \right|-\left|b \right|\leq\left|a-b \right|\leq\left|a \right|+\left|b \right|

Meu pensamento foi o seguinte:
pegando um "a" qualquer e um "b" qualquer pertencente aos inteiros ou seja:
a=-2 e b=5 , fazendo assim.


\left|-2 \right|-\left|5 \right|\leq\left|-2-5 \right|\leq\left|-2 \right|+\left|5 \right|

2-5\leq7\leq2+5

-3\leq7\leq7

e ai pessoal estou certo?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: mat para o fundamental: prova

Mensagempor ant_dii » Qua Abr 24, 2013 14:57

Victor Gabriel escreveu:Olá pessoal tem alguém que possa mim dizer se estou certo ou não.
Olha só. A questão pedi para mim prova que:
\left|a \right|-\left|b \right|\leq\left|a-b \right|\leq\left|a \right|+\left|b \right|

Meu pensamento foi o seguinte:
pegando um "a" qualquer e um "b" qualquer pertencente aos inteiros ou seja:
a=-2 e b=5 , fazendo assim.


\left|-2 \right|-\left|5 \right|\leq\left|-2-5 \right|\leq\left|-2 \right|+\left|5 \right|

2-5\leq7\leq2+5

-3\leq7\leq7

e ai pessoal estou certo?


Bom, na verdade uma prova deve ser livre de um exemplo. Esse exemplo serve pra você perceber a relação, mas pode enganar pois se acontece de você escolher alguns números e sempre ser verdadeira e acaba que você conclui ser verdadeira ou em algum momento você escolhe outro número e falha e acaba que você conclui ser falsa.

Neste caso, ela sempre será verdadeira pra qualquer número que você escolher.

Veja o porque de fato:
Primeiro, considere que |a+b|\leq|a|+|b|
Então faça um lado de cada vez da desigualdade: vamos provar então que |a-b|\leq|a|+|b|
Veja
|a-b|= |a+(-b)| \leq |a|+|(-b)|=|a|+|b|

ou seja, |a-b| \leq |a|+|b|

Por outro lado, você tem que provar |a |-|b|\leq |a-b|
Veja
|a|=|b+(a-b)|\leq |b|+|a-b|

ou seja, |a|-|b|\leq |a-b|.

Agora, podemos concluir que de fato temos sempre
|a|-|b|\leq |a-b|\leq|a|+|b|

Como queríamos mostrar.
Editado pela última vez por ant_dii em Qua Abr 24, 2013 16:13, em um total de 1 vez.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: mat para o fundamental: prova

Mensagempor Victor Gabriel » Qua Abr 24, 2013 16:09

Valeu professor pela explicação!
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.