• Anúncio Global
    Respostas
    Exibições
    Última mensagem

mat para o fundamental: prova

mat para o fundamental: prova

Mensagempor Victor Gabriel » Ter Abr 23, 2013 18:15

Olá pessoal tem alguém que possa mim dizer se estou certo ou não.
Olha só. A questão pedi para mim prova que:
\left|a \right|-\left|b \right|\leq\left|a-b \right|\leq\left|a \right|+\left|b \right|

Meu pensamento foi o seguinte:
pegando um "a" qualquer e um "b" qualquer pertencente aos inteiros ou seja:
a=-2 e b=5 , fazendo assim.


\left|-2 \right|-\left|5 \right|\leq\left|-2-5 \right|\leq\left|-2 \right|+\left|5 \right|

2-5\leq7\leq2+5

-3\leq7\leq7

e ai pessoal estou certo?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: mat para o fundamental: prova

Mensagempor ant_dii » Qua Abr 24, 2013 14:57

Victor Gabriel escreveu:Olá pessoal tem alguém que possa mim dizer se estou certo ou não.
Olha só. A questão pedi para mim prova que:
\left|a \right|-\left|b \right|\leq\left|a-b \right|\leq\left|a \right|+\left|b \right|

Meu pensamento foi o seguinte:
pegando um "a" qualquer e um "b" qualquer pertencente aos inteiros ou seja:
a=-2 e b=5 , fazendo assim.


\left|-2 \right|-\left|5 \right|\leq\left|-2-5 \right|\leq\left|-2 \right|+\left|5 \right|

2-5\leq7\leq2+5

-3\leq7\leq7

e ai pessoal estou certo?


Bom, na verdade uma prova deve ser livre de um exemplo. Esse exemplo serve pra você perceber a relação, mas pode enganar pois se acontece de você escolher alguns números e sempre ser verdadeira e acaba que você conclui ser verdadeira ou em algum momento você escolhe outro número e falha e acaba que você conclui ser falsa.

Neste caso, ela sempre será verdadeira pra qualquer número que você escolher.

Veja o porque de fato:
Primeiro, considere que |a+b|\leq|a|+|b|
Então faça um lado de cada vez da desigualdade: vamos provar então que |a-b|\leq|a|+|b|
Veja
|a-b|= |a+(-b)| \leq |a|+|(-b)|=|a|+|b|

ou seja, |a-b| \leq |a|+|b|

Por outro lado, você tem que provar |a |-|b|\leq |a-b|
Veja
|a|=|b+(a-b)|\leq |b|+|a-b|

ou seja, |a|-|b|\leq |a-b|.

Agora, podemos concluir que de fato temos sempre
|a|-|b|\leq |a-b|\leq|a|+|b|

Como queríamos mostrar.
Editado pela última vez por ant_dii em Qua Abr 24, 2013 16:13, em um total de 1 vez.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: mat para o fundamental: prova

Mensagempor Victor Gabriel » Qua Abr 24, 2013 16:09

Valeu professor pela explicação!
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)