por laura1970 » Sex Fev 22, 2013 15:15
Por gentileza ..Gostaria de obter uma ajuda nesta questao.
Considere a fração -154/12-36x.
Determine x sabendo que a fração é equivalente a fração -3/x+3. Depois que encontrar o valor de x, substitua nas frações e verifique se são de fato equivalentes.
Resposta : meus calculos:
x = 213/131..Esta certa a resposta???
-
laura1970
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Fev 22, 2013 15:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: computação
- Andamento: cursando
por Rafael16 » Sex Fev 22, 2013 16:54
-
Rafael16
- Colaborador Voluntário

-
- Mensagens: 154
- Registrado em: Qui Mar 01, 2012 22:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: cursando
por laura1970 » Sex Fev 22, 2013 18:24
Muito agradecida
Esta aqui fazendo...só que estava fazendo separadamente..mas dava o mesmo valor.
Muito legal seu trabalho.
abraços Laura
-
laura1970
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Sex Fev 22, 2013 15:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: computação
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Matematica Financeira fração
por itamaratento » Sáb Jan 25, 2014 22:21
- 1 Respostas
- 2371 Exibições
- Última mensagem por DanielFerreira

Sáb Fev 08, 2014 19:37
Matemática Financeira
-
- Considere a função
por Ana Maria da Silva » Qui Abr 25, 2013 16:06
- 1 Respostas
- 1113 Exibições
- Última mensagem por DanielFerreira

Qui Abr 25, 2013 18:00
Cálculo: Limites, Derivadas e Integrais
-
- Considere que a função w= 33,5+0,6t+(0,45t-35).V^0,15
por Silva339 » Dom Mai 05, 2013 13:06
- 0 Respostas
- 1537 Exibições
- Última mensagem por Silva339

Dom Mai 05, 2013 13:06
Funções
-
- Considere as circunferências...
por David_Estudante » Sáb Mai 25, 2013 17:48
- 0 Respostas
- 734 Exibições
- Última mensagem por David_Estudante

Sáb Mai 25, 2013 17:48
Geometria Analítica
-
- considere as proposiçoes
por flavio neves » Qua Fev 24, 2016 15:10
- 0 Respostas
- 1270 Exibições
- Última mensagem por flavio neves

Qua Fev 24, 2016 15:10
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.