por Valmel » Ter Nov 20, 2012 11:09
35)Escrevendo-se a série natural dos números inteiros,sem separar os algarismos,obtém-se:1234567891011121314151617...Determine o algarismo que ocupa o 1173° lugar.
1) De 1 a 9= 9-1+1=9x 1=9 algarismos
2) De 10 a 99= 99-10+1= 90 x2=180 algarismos...
Daí em diante tô confusa e queria uma explicação detalhada,assim como fiz,pois não estou entendendo.Por favor,alguém me ajude,quero terminar logo esta bateria de exercícios referente a números,obrigada.
-
Valmel
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qui Set 27, 2012 17:59
- Localização: Ceará
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Dom Dez 02, 2012 19:04
1 à 9 = (9 - 1 + 1) X 1 = 9 algarismos
10 à 99 = (99 - 10 + 1) X 2 = 180 algarismos
100 à 999 = (999 - 100 + 1) X 3 = 2.700 algarimos
Valmel,
observe que ao efetuar a soma acima, iremos obter 2.889 algarismos. Esse valor é maior que 1.173, então, o correto é fazermos:
1 à 9 = (9 - 1 + 1) X 1 = 9 algarismos
10 à 99 = (99 - 10 + 1) X 2 = 180 algarismos
100 à k = (k - 100 + 1) X 3 = 3(k - 99) algarismos
--------------------------------------------------------------
9 + 180 + 3(k - 99) = 1173
189 + 3k - 297 = 1173
3k = 1281
k = 427
Comente qualquer dúvida!
Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- preciso de ajuda neste problema
por flaviano » Qui Nov 18, 2010 23:41
- 3 Respostas
- 2168 Exibições
- Última mensagem por alexandre32100

Sáb Nov 20, 2010 19:28
Estatística
-
- Ajuda neste problema aqui
por dimih » Dom Ago 26, 2012 14:49
- 1 Respostas
- 2743 Exibições
- Última mensagem por MarceloFantini

Dom Ago 26, 2012 15:54
Funções
-
- AJUDA NESTE EXERCÍCIO, POR FAVOR!
por LVPM » Ter Nov 22, 2016 18:11
- 2 Respostas
- 2140 Exibições
- Última mensagem por Cleyson007

Qua Nov 23, 2016 11:41
Funções
-
- Preciso ajuda urgente neste Limite
por duduscs » Seg Set 23, 2013 16:32
- 1 Respostas
- 1726 Exibições
- Última mensagem por Sobreira

Ter Set 24, 2013 01:53
Cálculo: Limites, Derivadas e Integrais
-
- [Geometria Plana] Ajuda neste exercício
por cidecid1 » Qui Out 24, 2013 15:51
- 0 Respostas
- 1222 Exibições
- Última mensagem por cidecid1

Qui Out 24, 2013 15:51
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.