• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DIVISIBILIDADE]

[DIVISIBILIDADE]

Mensagempor juliohenriquelima14 » Sáb Dez 13, 2014 23:20

Boa noite!
Estou praticando algumas questões que envolve as propriedades da divisibilidade, já consegui resolver algumas, porém o assunto ainda não ficou tão claro.
Desde já agradeço a todo que vêm ajudando, o fórum tem sido de extrema importância para o meu desenvolvimento no meio acadêmico.

1-Mostre que para todo n 14|3^4^n^+^2+5^2^n^+^1

Minha ideia é a seguinte:

i) Queremos mostrar que 14|3^4^n^+^1 + 5^2^n^+^1

ii)10+4|(3^2)^2^n^+^1 +5^2^n^+^1\\
10+4|9^2^n^+^1 + 5^2^n^+^1

iii)Por fim, a proposição a+b|a^2^n^+^1+b^2^n^+^1 garante que 10+4|9^2^n^+^1 + 5^2^n^+^
juliohenriquelima14
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Nov 01, 2014 09:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema da Informação
Andamento: cursando

Re: [DIVISIBILIDADE]

Mensagempor adauto martins » Dom Dez 21, 2014 11:49

p/n=0\Rightarrow {3}^{2}+5=14\Rightarrow {3}^{2}+5=0mod(14)
n=1\Rightarrow {3}^{6}+{5}^{3}=729+125=854\Rightarrow 854/14=61,ou seja {3}^{6}+{5}^{3}=0.mod(14)p/n=2\Rightarrow {3}^{10}+{5}^{5}=59049+3125=62147\Rightarrow 62147/14=4441,logo {3}^{10}+{5}^{5}=0.mod(14)...observe q. os numeros calculados sao todos combinaçoes de ({3}^{2},5) entao,se tomarmos p/n=k\Rightarrow {3}^{4k+2}+{5}^{2k+1}seja multiplo de 14...{3}^{4k+2}+{5}^{2k+1}=0mod(14)
teremos {3}^{4(k+1)+2}+{5}^{2(k+1)+1}=0.mod(14)...de fato,p/n=k+1\Rightarrow {3}^{4(k+1)+2}+{5}^{2(k+1)+1}={3}^{4k+4+2}+{5}^{2k+2+1}={3}^{6}.{3}^{4k}+{5}^{3}{5}^{2k}={3}^{6+2k}{3}^{2}+{5}^{2k}.5,logo {3}^{4(k+1)+2}+{5}^{2(k+1)+1}=0.mod(14)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Aritmética

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: