Venho humildemente pedir ajuda num exercício de fatoração desta lista: http://www.profcardy.com/cardicas/exerc ... a_02_1.htm.
Trata-se do exercício 3: Fatore
- 4x + 4 + 3 (x - 2) (x + 1). A resposta, julgando pelo gabarito, seria a alternativa "D".Sei que o primeiro fator da expressão (
- 4x + 4) trata-se do quadrado da diferença de X e 2 (
); mas simplesmente não consigo resolver 3(x - 2) (x + 1). Apliquei a distributiva em 3(x - 2) e cheguei a (3x - 6), que em seguida multipliquei por (x + 1), ficando então com 3
+ 3x - 6x - 6 e, consequentemente, 3
- 3x - 6 (espero que eu tenha procedido de forma correta; fiquei com dúvida na questão da estrutura básica da expressão por se tratar de duas operações de mesma força simultâneas). Fatorei essa expressão e obtive 3(
- x - 2). E agora não sei como proceder. Tentei aplicar o método de achar quadrados nesta expressão, mas só me confundi. Espero que não tenha cometido nenhum erro muito crasso. Muito obrigado pela atenção e, sinceramente, perdoem minha ignorância.

![\\ x^2 - 4x + 4 + 3(x - 2)(x + 1) = \\\\ (x - 2)^2 + 3(x - 2)(x + 1) = \\\\ (x - 2)(x - 2) + 3(x - 2)(x + 1) = \\\\ (x - 2)[(x - 2) + 3(x + 1)] = \\\\ (x - 2)[x - 2 + 3x + 3] = \\\\ \boxed{(x - 2)(4x + 1)} \\ x^2 - 4x + 4 + 3(x - 2)(x + 1) = \\\\ (x - 2)^2 + 3(x - 2)(x + 1) = \\\\ (x - 2)(x - 2) + 3(x - 2)(x + 1) = \\\\ (x - 2)[(x - 2) + 3(x + 1)] = \\\\ (x - 2)[x - 2 + 3x + 3] = \\\\ \boxed{(x - 2)(4x + 1)}](/latexrender/pictures/026dafed9640ba74651d71eee4e8730a.png)
em evidência, uma vez que é comum aos dois termos.
+ 2.a.b +
.![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.