por BlackSabbathRules » Dom Jun 22, 2014 04:56
Fatore:

.
Resposta:

-
BlackSabbathRules
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mai 09, 2014 13:55
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Dom Jun 22, 2014 14:04
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por e8group » Dom Jun 22, 2014 14:52
Deixe

.
Proposta 1 :Alguns resultados uteis :
(i)
Se

é uma raiz de

então existe um polinômio de grau 3 tal que o seu produto por

dá

. Descobrindo-se uma raiz deste polinômio de grau 3 , o processo contínua ... obterá um polinômio de grau 2 tal que seu produto por

dá exatamente este polinômio de grau 3 . O método termina quando o polinômio não admitir raízes reais .
De forma pratica , estes polinômios de grau menor que o polinômio original em estudo pode ser obtido por sua divisão pelo termo

. A titulo de exemplificar ,

é exatamente

. Dividindo

por

obterá

, encontrando as raízes deste polinômio tem-se ele escrito na forma fatorada

.Juntando tudo tem-se
![]6-5 x-2 x^2+x^3 = (x-1)(x-3)(x+2) ]6-5 x-2 x^2+x^3 = (x-1)(x-3)(x+2)](/latexrender/pictures/35842430ac30ae7eb600f687b0bca0a7.png)
.
(ii)
Lemma :
Seja

com

e

. Suponha que

é uma
raiz inteira deste polinômio , então

divide

.
De fato :
Por hip.

o que implica que
o que implica que

. Desde que

, então
Dentro da
proposta 1 vamos usar (ii) para investigar se

admite uma raiz inteira .
Suponha que exista

inteiro t.q ,

, como todos os coef. de

são positivos , então só pode ser

. Pergunta : Quais os divisores negativos de

?
Analisando os casos possíveis -1,-3,-9 obterá que
![p_4(-3) = (-3)^4 + 6(-3)^3 +10(-3)^2 +6(-3) + 3 = (-3)^2[ \underbrace{(-3)^2 + 6(-3) +10 -1}_{9-18 +10 -1 = 0 } ] = 0 p_4(-3) = (-3)^4 + 6(-3)^3 +10(-3)^2 +6(-3) + 3 = (-3)^2[ \underbrace{(-3)^2 + 6(-3) +10 -1}_{9-18 +10 -1 = 0 } ] = 0](/latexrender/pictures/3d4ade328e93dc76233fa8b80ee7cd7a.png)
.
Portanto

é uma raiz de

. Dividindo

por

obterá

.
Podemos também supor que exista

inteiro t.q

raiz de

. Logo

divide

(note que r < 0 )
Tem-se que
![(-3)^3 + 3(-3)^2 + (-3) + 3 = (-3)[\underbrace{(-3)^2 + 3(-3) + 1 + -1}_{0}] = 0 (-3)^3 + 3(-3)^2 + (-3) + 3 = (-3)[\underbrace{(-3)^2 + 3(-3) + 1 + -1}_{0}] = 0](/latexrender/pictures/1ce7825030edeac1a313aeb60b74c6cc.png)
. Dividindo-se

por

obterá

. Como

não admite raízes reais então o processo finaliza-se e tem-se a forma fatorada requerida .
Proposta 2 Dado um polinômio

de grau

,

e que se sabe que

é a sua raiz . Escreveremos

sob a seguinte forma

onde

são polinômios tais que

compartilham a mesma raiz real

, i.e ,

e além disso eles cumprem com

. A vantagem é que alguns dos

certamente possuem grau menor que n (possa ser que todos q_i possuem grau n ) o que facilita determinar outra raiz de cada polinômio .
Seja

. Usando (ii) descobre-se que

. E segue que

. Verifica-se que

(com multiplicidade 2) é raiz de

logo também o é de

, mas !

e com isso ganhamos que

.
Vai de cada um ...
Pode-se surgi mais n propostas de solução .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [fatoração] fatoração de polinômio do quarto grau.
por +Danilo2 » Qui Set 29, 2016 10:43
- 5 Respostas
- 8913 Exibições
- Última mensagem por +Danilo2

Sáb Out 08, 2016 18:17
Polinômios
-
- fatoração de Polinômio fatoração de agrupamento
por Estudante13 » Sex Nov 09, 2012 22:52
- 1 Respostas
- 3259 Exibições
- Última mensagem por Cleyson007

Sex Nov 09, 2012 23:06
Álgebra Elementar
-
- [fatoração] Exercício de Fatoração
por Cleyson007 » Qua Abr 30, 2008 00:39
- 3 Respostas
- 8823 Exibições
- Última mensagem por admin

Qua Abr 30, 2008 02:15
Álgebra Elementar
-
- Fatoração
por Rogerioeetc » Sex Jul 24, 2009 02:00
- 2 Respostas
- 2539 Exibições
- Última mensagem por Rogerioeetc

Dom Jul 26, 2009 14:26
Álgebra Elementar
-
- Fatoração
por Jaqueline Pimenta » Qui Out 01, 2009 11:50
- 5 Respostas
- 4081 Exibições
- Última mensagem por Jaqueline Pimenta

Seg Out 05, 2009 12:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.