• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Será que algum gênio resolve isso?

Será que algum gênio resolve isso?

Mensagempor BrenoNaval » Dom Mar 30, 2014 19:27

A raiz quadrada de um número P é igual a x e o resto é o maior possível.A raiz cúbica de um número S é igual a x e o resto também é o maior possível.Se a soma desses restos é 288,qual é a soma dos dígitos do número S?
Resposta: 27

Esse exercício foi retirado do livro Praticando Aritmética do capítulo de Radiciação.
Para facilitar o entendimento,de primeira mão irei informar a vocês alguns dados a parte.
Teorema 1: ''O maior resto que se pode encontrar na extração da raiz quadrada de um número natural N é igual ao dobro da raiz.''
Ex.:Tome A=8 ,o maior quadrado perfeito em 8=>4=2²
Logo o maior resto=3²-1-2²=2.2

Teorema 2:''O maior resto que se pode encontrar no extração da raiz cúbica de um número N é igual ao triplo do quadrado da raiz mais o triplo da raiz.''
ex.:Tome S=26=3³-1 ,o maior cubo perfeito em 26=>8=2³
Logo o maior resto=3³-1-2³=3.2²+3.2

Tentei utilizar esses dados na questão mais resultou em uma equação muito complexa. Resposta da questão:27
BrenoNaval
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 30, 2014 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Será que algum gênio resolve isso?

Mensagempor Russman » Dom Mar 30, 2014 19:36

De que livro são esses Teoremas?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Será que algum gênio resolve isso?

Mensagempor BrenoNaval » Dom Mar 30, 2014 19:40

praticando a aritmética josé carlos admo lacerda-Capítulo de radiciação
BrenoNaval
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 30, 2014 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Será que algum gênio resolve isso?

Mensagempor young_jedi » Seg Mar 31, 2014 18:20

se x é raiz de P e sobra um resto então

x^2<P<(x+1)^2

para que o resto seja o maior possivel temos então que

P=(x+1)^2-1=x^2+2x

portanto o resto sera

P-x^2=2x

do mesmo modo

x^3<S<(x+1)^S

S=(x+1)^3-1=x^3+3x^2+3x

S-x^3=3x^2+3x

portanto a soma dos restor sera

2x+3x^2+3x=288

3x^2+5x=288

3x^2+5x-288=0

resolendo por baskara encontraremos que

x=9

ou x=-96

como x deve ser positivo então a solução é 9 portanto

S=(9+1)^3-1=999

portanto a soma dos algarismos sera 9+9+9=27
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Será que algum gênio resolve isso?

Mensagempor BrenoNaval » Sex Abr 11, 2014 12:02

Resposta correta.
Eu cheguei a ter esse pensamento,no entanto pelo motivo de o livro na qual eu estou resolvendo(praticando aritmética) ter apenas a formula 2x e 3y²+3y eu não cheguei a conclusão de que x²<p<(x+1)² ou que Y³<P<(Y+1)³,no caso dessa questão especifica que que X e Y serão iguais.
Contudo, muito Obrigado por sua ajuda.
BrenoNaval
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 30, 2014 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D