por Giudav » Sex Fev 28, 2014 02:19
A razão entre o lado do triângulo equilátero inscrito e o lado do triângulo equilátero circunscrito em uma circunferência de R é:
-
Giudav
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Fev 21, 2012 23:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por alexandre_de_melo » Sex Fev 28, 2014 20:16
Imagino que o enunciado seja:
"A razão entre o lado do triângulo equilátero inscrito e o lado do triângulo equilátero circunscrito em uma circunferência de raio R é:"
Primeiro, lembremos que no caso do triângulo equilátero, o baricentro do triângulo inscrito e o do circunscrito coincidem com o seu centro.
Segundo, lembremos que o baricentro divide cada mediana na razão de 2 para 1. A distância entre o vértice e o baricentro é o dobro da distância entre o baricentro e a base.
Vamos á resolução:

, e como,

,após substituir h, e desenvolver, obtemos

.

, e como,

,após substituir H, e desenvolver, obtemos

.
Portanto,

.
Valeu!!! Bom retiro pra quem é de retiro!!!Bom carnaval pra quem é de carnaval!!!
-
alexandre_de_melo
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Fev 25, 2014 12:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. em Matemática
- Andamento: formado
-
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana - Polígonos regulares
por claudia » Sex Set 05, 2008 17:37
- 2 Respostas
- 8986 Exibições
- Última mensagem por claudia

Sex Set 05, 2008 20:10
Geometria Plana
-
- Poligonos regulares inscritos na circunferencia
por janderson77 » Seg Dez 02, 2013 12:12
- 0 Respostas
- 871 Exibições
- Última mensagem por janderson77

Seg Dez 02, 2013 12:12
Geometria Plana
-
- [Polígonos] questão sobre polígonos
por -daniel15asv » Qui Ago 02, 2012 20:11
- 2 Respostas
- 2037 Exibições
- Última mensagem por -daniel15asv

Sex Ago 03, 2012 00:24
Geometria Plana
-
- Poligonos
por cristina » Qui Abr 15, 2010 19:37
- 1 Respostas
- 3174 Exibições
- Última mensagem por Elcioschin

Qui Abr 15, 2010 20:25
Geometria Plana
-
- Polígonos
por Diana » Seg Mai 23, 2011 22:10
- 4 Respostas
- 2385 Exibições
- Última mensagem por Diana

Seg Mai 23, 2011 23:19
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.