• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Polígonos regulares]

[Polígonos regulares]

Mensagempor Giudav » Sex Fev 28, 2014 02:19

A razão entre o lado do triângulo equilátero inscrito e o lado do triângulo equilátero circunscrito em uma circunferência de R é:
Giudav
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Fev 21, 2012 23:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Polígonos regulares]

Mensagempor alexandre_de_melo » Sex Fev 28, 2014 20:16

Imagino que o enunciado seja:
"A razão entre o lado do triângulo equilátero inscrito e o lado do triângulo equilátero circunscrito em uma circunferência de raio R é:"

Primeiro, lembremos que no caso do triângulo equilátero, o baricentro do triângulo inscrito e o do circunscrito coincidem com o seu centro.
Segundo, lembremos que o baricentro divide cada mediana na razão de 2 para 1. A distância entre o vértice e o baricentro é o dobro da distância entre o baricentro e a base.

Vamos á resolução:

R=\frac{2}{3}*h, e como, h=l*\frac{ \sqrt 3}{2} ,após substituir h, e desenvolver, obtemos l={\sqrt 3{ R.

R=\frac{1}{3}*H, e como, H=L*\frac{ \sqrt 3}{2} ,após substituir H, e desenvolver, obtemos L=2*{\sqrt 3{ R.

Portanto, \frac{L}{l}= 2.

Valeu!!! Bom retiro pra quem é de retiro!!!Bom carnaval pra quem é de carnaval!!!
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.