• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração

Fatoração

Mensagempor Lucio » Sex Dez 28, 2012 10:01

Bom dia

Me deparei com esse exercício de fatoração e não consigo resolver.

Fatore a expressão {x}^{4}+4{x}^{2}+1

Infelizmente não tenho a resposta.

Obrigado pela atenção.
Abraços
Lucio
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Dez 21, 2011 07:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Fatoração

Mensagempor Jhenrique » Sex Dez 28, 2012 16:09

vc sabe o que significa fatorar um polinômio ?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Fatoração

Mensagempor DanielFerreira » Sex Dez 28, 2012 21:43

Lucio,
boa noite!
A expressão é mesmo essa?
Lucio escreveu:...{x}^{4}+4{x}^{2}+1...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Fatoração

Mensagempor Lucio » Sex Dez 28, 2012 22:05

Boa noite Jhenrique.
Sei, fatorar é escrever a expressão através do produto entre outros polinômios.

Boa noite danjr5, a expressão é essa mesmo.

Minha tentativa foi essa:

{x}^{4}+{4x}^{2}+1

\sqrt[2]{{x}^{4}} = {x}^{2}

\sqrt[2]{{1}^{4}} = 1

{\left({x}^{2}+1 \right)}^{2} = {x}^{4}+{2x}^{2}+1


Eu travo aqui, não consigo desenvolver mais, preciso chegar no resultado de {4x}^{2} e não consigo.

Obrigado pela atenção de vcs
Abraços
Lucio
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Dez 21, 2011 07:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Fatoração

Mensagempor joaofonseca » Sex Dez 28, 2012 22:55

A sua tentativa, fez-me lembrar um método de fatoração que consiste em completar o trinómio do quadrado perfeito.
Se igualássemos essa expressão a zero e tentássemos encontrar as soluções da equação , seria assim que eu faria:

x^4+4x^2+1=0
(x^4+4x^2+1+3)-3=0
(x^4+4x^2+4)-3=0
(x^2+2)^2-3=0

Como se trata de uma expressão fica: (x^2+2)^2-3
Observando esta última expressão, podemos continuar da seguinte forma,

(x^2+2)^2-(\sqrt{3})^2=
\left [(x^2+2)-\sqrt{3} \right ] \cdot \left [(x^2+2)+\sqrt{3} \right ]=
\left (x^2+2-\sqrt{3} \right ) \cdot \left (x^2+2+\sqrt{3} \right )
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Fatoração

Mensagempor Lucio » Sex Dez 28, 2012 23:41

Boa noite joaofonseca

Muito obrigado pela sua ajuda.
Abraços
Lucio
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Dez 21, 2011 07:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.