por Imscatman » Qua Fev 19, 2014 18:46
Olá! Faz uns anos que não posto aqui, hehe.
Estou encarando o Introduction to Logic, do Patrick Suppes (pdf:
http://tinyurl.com/oyytpee).
E na página 113 do livro (131 do pdf), 5ª questão, se pede o seguinte:
Com base nos três seguintes axiomas, prove o teorema

:
Axioma 1:

Axioma 2:

Axioma 3:

Isto é, dada Associatividade (axioma 1) e os outros 2 axiomas, demonstrar a existência do "elemento identidade à direita". Se não estou cometendo algum erro muito estúpido, esse exercício parece dificílimo. Já passei umas dez horas tentando de tudo: substituições de iguais por iguais; fazer os axiomas 2 e 3 se tornarem

e

, respectivamente; prova por absurdo. Não parece haver maneira de sair dos

para um existencial puro

, que é o que se pede. Infelizmente não dá pra detalhar aqui a tentativa de derivação. O núcleo é:


E pelo Axioma 3:


Nesse ponto não posso quantificar

nem existencialmente, nem universalmente. O subscrito em

(onde

é um nome ambíguo derivado de

, e o subscrito indica a dependência de

, que ocorria livre na fórmula original -- além disso,

precisa ser diferente de

, que ocorre antes; regras de

em Suppes, rs) me impede de simplesmente

-quantificar sobre

e chegar no resultado procurado

, e daí para

. Tampouco parece ajudar qualquer coisa a partir daqui:

E daí brincando com o axioma 1. Não consigo provar que

, e talvez isso ajudaria.
Talvez inserir

no meio e fazer alguma coisa ajude. Mas não sei o quê... Preciso de uma fórmula

, sem subscrito, mas os axiomas parecem incapazes de produzi-la. Estou especialmente frustrado, porque esse parece ser um passo chave para usar todo o poder dos axiomas. Sigo pensando...
-

Imscatman
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mar 17, 2011 17:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Imscatman » Qui Fev 20, 2014 00:11
Salvo erro, achei o caminho. É mesmo uma dessas escolhas dificílimas de substituição.
Do Axioma 3 vem:

Do Axioma 3 também vem:

Do Axioma 2 vem:

Com essas peças à mão, traz-se do Axioma 1 exatamente essas substituições:


Usa-se o Axioma 1 novamente, para arrumar os parênteses idealmente, ficando assim:

Então, olhando para as igualdades iniciais, faz-se as substituições estrategicamente:


Axioma 1 para parênteses, novamente; e a substituição final:


Agora o subscrito

não impede de quantificar o

da fórmula. E feito!


Q. E. D.

Pra achar esse caminho, fiquei testando o encaixe das fórmulas como se fossem peças de lego.
Exercício mais difícil que já fiz, putz.
Bonito vai ser se alguém mostrar que tem algum erro, hehe. Mas, por favor!
-

Imscatman
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qui Mar 17, 2011 17:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Lógica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teoria de grupos
por Luiz Augusto Prado » Seg Mai 30, 2011 21:37
- 1 Respostas
- 1393 Exibições
- Última mensagem por Luiz Augusto Prado

Ter Mai 31, 2011 19:21
Álgebra Elementar
-
- [Teoria de Grupos] Demonstrações
por Bruna_Ferreira » Seg Jan 05, 2015 16:18
- 1 Respostas
- 1773 Exibições
- Última mensagem por adauto martins

Sex Jan 09, 2015 16:05
Álgebra Elementar
-
- Grupos e Subgrupos
por Renato_RJ » Sex Jan 21, 2011 13:18
- 4 Respostas
- 4786 Exibições
- Última mensagem por Renato_RJ

Sex Jan 21, 2011 16:39
Álgebra Elementar
-
- Álgebra: Grupos de matrizes
por Caeros » Seg Abr 04, 2011 13:09
- 3 Respostas
- 2376 Exibições
- Última mensagem por LuizAquino

Ter Abr 05, 2011 10:41
Álgebra Elementar
-
- [Estruturas Algébricas] - Grupos
por MestreLC » Sex Jan 01, 2016 09:53
- 1 Respostas
- 2722 Exibições
- Última mensagem por adauto martins

Seg Jan 25, 2016 15:49
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.