por virginia » Sáb Abr 27, 2013 11:52
Não consegui resolver:
Um grupo de abelhas, cujo número era igual a raiz quadrada da metade de todo enxame, posou sobre uma rosa, tendo deixado para trás 8/9 do enxame; apenas uma abelha voava ao redor de um jasmim, atraída pelo zumbido de uma de suas amigas que caíra imprudentemente na armadilha da florzinha de doce fragrância. Quantas abelhas formavam o enxame?
Tentei montar assim
![\sqrt[2]{\frac{X}{2}} \sqrt[2]{\frac{X}{2}}](/latexrender/pictures/535f9f8b8bc9f04ca45d8141f5839024.png)
SENDO QUE NÃO CHEGUEI A CONCLUSÃO NENHUMA.
Verifiquei que ele fala que ficou 8/9 do enxame logo restou 1/9 do enxame que equivale a uma abelha, seria isso?
Bom se 1/9 equivale a uma abelha que igual a 9 bom parei aqui se alguém puder me ajudar.
Att,
Virginia
-
virginia
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Jul 12, 2012 15:15
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Administração
- Andamento: formado
por Jhennyfer » Sáb Abr 27, 2013 17:22
Oi virginia, tudo bem?
Bom, não sei muita coisa, posso estar errada, maaas...
vou tentar ajudar!
Bom, na sua resolução você colocou como grupo inteiro x e metade do grupo x/2. Certo?!
Penso assim, podemos dobrar pra facilitar...
assim podemos ter, 2x como grupo inteiro e x como metade. Concorda?
Se eu entendi bem, no enunciado diz que:
de um grupo abelhas é igual a raiz quadrada da metade de 2x... então:
![\sqrt[2]{x} \sqrt[2]{x}](/latexrender/pictures/2b552177173f128f54e48de06c7de3d9.png)
E que, esse grupo, deixou 8/9 abelhas para trás, e mais outra abelha que ficou em volta de um jasmim. Certo?
Então temos:
![\sqrt[2]{x}- \frac{8}{9}-1 \sqrt[2]{x}- \frac{8}{9}-1](/latexrender/pictures/3251313965b05957c25f54207956f0b1.png)
separamos o x...
![\sqrt[2]{x}= \frac{8}{9}+1 \sqrt[2]{x}= \frac{8}{9}+1](/latexrender/pictures/257b32bc534f003eb73bea629236d123.png)
![\sqrt[2]{x}= 8 \sqrt[2]{x}= 8](/latexrender/pictures/14adb2411d28fde32850fac69ca638e7.png)


Bom, o grupo é 2x.
Substituindo...




Posso estar errada, mas foi a melhor maneira que achei para resolver. Um abraço!
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Lógica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- problema basico de fisica usando derivadas
por iksin » Ter Set 11, 2018 16:29
- 1 Respostas
- 7181 Exibições
- Última mensagem por Gebe

Ter Set 11, 2018 17:38
Cálculo: Limites, Derivadas e Integrais
-
- Problema - Lógica
por RJ1572 » Seg Mar 01, 2010 13:08
- 1 Respostas
- 1488 Exibições
- Última mensagem por DanielFerreira

Qua Mar 03, 2010 08:28
Álgebra Elementar
-
- Problema Lógica
por RJ1572 » Dom Abr 04, 2010 13:22
- 1 Respostas
- 1411 Exibições
- Última mensagem por estudandoMat

Dom Abr 04, 2010 17:26
Álgebra Elementar
-
- Problema lógica
por RJ1572 » Dom Abr 04, 2010 21:32
- 1 Respostas
- 1374 Exibições
- Última mensagem por estudandoMat

Seg Abr 05, 2010 00:05
Álgebra Elementar
-
- problema de lógica
por Gladimir » Ter Fev 04, 2014 17:18
- 1 Respostas
- 1281 Exibições
- Última mensagem por fff

Ter Fev 04, 2014 17:40
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.