Quando eu estudava Álgebra Linear eu não entendi uma explicação referente a afirmação de que se o detA=0 então os vetores formam um sistema LD se for diferente de zero formam um sistema LI
então eu deduzi o seguinte
A matriz A é a matriz coeficiente AX=0
Se quando através de operações elementares eu reduzir a matriz A a forma escada e obter B e a última linha da matriz for nula por exemplo(uma das propriedade de uma matriz com det=0), e depois for resolver o sistema BX=0, vai dar um sistema indeterminado.
Portanto o sistema será linearmente dependente LD
Meu raciocínio está correto?

não tem nenhuma linha ou coluna nula, contudo seu determinante é nulo.
.

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.