por Ana_Rodrigues » Seg Abr 30, 2012 15:35
Quando eu estudava Álgebra Linear eu não entendi uma explicação referente a afirmação de que se o detA=0 então os vetores formam um sistema LD se for diferente de zero formam um sistema LI
então eu deduzi o seguinte
A matriz A é a matriz coeficiente AX=0
Se quando através de operações elementares eu reduzir a matriz A a forma escada e obter B e a última linha da matriz for nula por exemplo(uma das propriedade de uma matriz com det=0), e depois for resolver o sistema BX=0, vai dar um sistema indeterminado.
Portanto o sistema será linearmente dependente LD
Meu raciocínio está correto?
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Sáb Mai 05, 2012 21:09
Uma afirmação falsa que fez é que ter uma linha ou coluna nula é propriedade de matrizes com determinante zero. Note que

não tem nenhuma linha ou coluna nula, contudo seu determinante é nulo.
A propriedade a qual você se refere é que
se uma linha ou mais for combinação linear de outras, então o determinante é nulo. Pensando como sistema de equações, isto equivale a dizer que através de algumas equações é possível anular as outras, portanto o sistema será indeterminado (linearmente dependente).
É interessante analisar isso geometricamente: pensando em três dimensões, teremos


.
Ao montar o sistema, veremos que cada equação representa
um plano onde os vetores normais tem coordenadas iguais aos coeficientes. Quando o sistema for linearmente independente, isto significa que os três planos tem interseção igual a um único ponto, enquanto que linearmente dependente pode dizer que não há interseção (pelo menos dois são paralelos) ou a interseção é uma reta.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Ana_Rodrigues » Qua Mai 09, 2012 17:32
Marcelo,
Eu considerei uma matriz com a última linha nula, foi um exemplo, e eu disse que ter uma linha nula era UMA das propriedades, obviamente existem outras propriedades como a citada por você, pois ter uma linha nula significa dizer que esta linha é combinação linear das demais.
Obrigada!
-
Ana_Rodrigues
- Usuário Parceiro

-
- Mensagens: 51
- Registrado em: Seg Nov 14, 2011 09:44
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinantes
por Cleyson007 » Dom Jul 20, 2008 11:55
- 1 Respostas
- 5064 Exibições
- Última mensagem por admin

Dom Jul 20, 2008 18:58
Matrizes e Determinantes
-
- determinantes..
por GABRIELA » Ter Set 15, 2009 20:12
- 2 Respostas
- 3744 Exibições
- Última mensagem por GABRIELA

Qui Set 17, 2009 18:13
Matrizes e Determinantes
-
- determinantes
por carolina camargo » Sáb Jul 10, 2010 18:03
- 1 Respostas
- 2995 Exibições
- Última mensagem por Molina

Dom Jul 11, 2010 15:21
Álgebra Elementar
-
- determinantes
por carolina camargo » Sáb Jul 10, 2010 18:08
- 1 Respostas
- 2809 Exibições
- Última mensagem por Tom

Sáb Jul 10, 2010 23:16
Álgebra Elementar
-
- Determinantes
por aline2010 » Seg Jul 19, 2010 14:13
- 1 Respostas
- 3175 Exibições
- Última mensagem por Douglasm

Seg Jul 19, 2010 19:26
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.