• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra linear - Subespaço Gerado

Álgebra linear - Subespaço Gerado

Mensagempor nietzsche » Sex Jan 06, 2012 19:48

Alguém poderia me ajudar com o seguinte problema?

Sejam {W}_{1}, {W}_{2}, ..., {W}_{k} subespaços de um espaço vetorial V.

Mostre que
<\bigcup_{i=1}^{k}{W}_{k}> \subset { W}_{1} + {W}_{2} + ... + {W}_{k}
onde
<\bigcup_{i=1}^{k}{W}_{k}> é o subespaço gerado pela união finita dos subespaços {W}_{i}
e { W}_{1} + {W}_{2} + ... + {W}_{k} = { w_{1} + w_{2} + ... + w_{k} /w_{i} \in W_{i}  } }.

Agradeço desde já.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Álgebra linear - Subespaço Gerado

Mensagempor LuizAquino » Seg Jan 09, 2012 19:07

nietzsche escreveu:Sejam {W}_{1}, {W}_{2}, ..., {W}_{k} subespaços de um espaço vetorial V.

Mostre que
<\bigcup_{i=1}^{k}{W}_{k}> \,  \subset { W}_{1} + {W}_{2} + \cdots + {W}_{k}
onde
<\bigcup_{i=1}^{k}{W}_{k}> é o subespaço gerado pela união finita dos subespaços {W}_{i}
e { W}_{1} + {W}_{2} + \cdots + {W}_{k} = { w_{1} + w_{2} + \cdots + w_{k} /w_{i} \in W_{i} } }.


Lembre-se que para provar que X\subset Y, devemos provar que para todo x\in X, temos que x\in Y .

Seja \vec{w} \in \, <\bigcup_{i=1}^{k}{W}_{i}> .

Como \vec{w} pertence a união de todos os W_i (com i=1, 2, ..., k), então ele pertence a pelo menos um desses conjuntos.

Suponha, sem perda de generalidade, que esse conjunto seja o W_j, sendo 1 \leq j \leq k . Ou seja, suponha que temos \vec{w} \in W_j .

Como \vec{w} \in W_j, temos que \vec{w} \in W_1 + W_2 + \cdots + W_k , já que podemos escrever:

\vec{w} = \underbrace{\vec{0} + \vec{0} + \cdots}_{\textrm{de 1 at\'e j-1}} + \vec{w} + \underbrace{\cdots + \vec{0} + \vec{0}}_{\textrm{de j+1 at\'e k}}, lembrando que \vec{0}\in W_i com i=1, 2, ..., j-1, j+1, ..., k.

Como o \vec{w} escolhido foi qualquer, podemos concluir que:

<\bigcup_{i=1}^{k}{W}_{i}> \, \subset {W}_{1} + {W}_{2} + \cdots + {W}_{k}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Álgebra linear - Subespaço Gerado

Mensagempor nietzsche » Ter Jan 10, 2012 17:16

Muito obrigado. Valeu, Luiz!
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59