por p1a2u3lo » Dom Set 18, 2016 11:08
Mostrar que a transformacão linear A : R2 R3 A(x; y) = (x + y, x - y, y) e injetiva e
obter uma inversa a esquerda linear.
-
p1a2u3lo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Set 18, 2016 10:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por adauto martins » Qua Jan 11, 2017 14:47
para que

,teremos q. ter

...
de fato,

para se ter uma inversa,qquer q. seja a multiplicaçao(a direita ou esquerda),deve-se mostrar q.

é sobrejetiva...
seja
![v=(a.(x+y),b(x-y),c.y)=x.(a+b)+y.(a-b+c)\Rightarrow [a(1,1,0),b(1,-1,0),c(0,0,1)] v=(a.(x+y),b(x-y),c.y)=x.(a+b)+y.(a-b+c)\Rightarrow [a(1,1,0),b(1,-1,0),c(0,0,1)]](/latexrender/pictures/801c93fa2f623d04fad86b588b4d0abb.png)
é uma base p/ IM(A)...logo dim(IM)=3...A é sobrejetiva....portanto admite inversa...entao:

...calcule

,como exercicio...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qui Jan 12, 2017 12:00
uma correçao:
a transf.

,nao é sobrejetiva,pois:
![v=(x+y,x-y,y)=x(1,1,0)+y(1,-1,0)\Rightarrow [(1,1,0),(1,-1,0)] v=(x+y,x-y,y)=x(1,1,0)+y(1,-1,0)\Rightarrow [(1,1,0),(1,-1,0)]](/latexrender/pictures/15eb8601117c21235dade0d4edb36e70.png)
é uma base de IM(A),logo

,portanto nao é sobrejetiva...
logo admite,por ser injetiva somente multiplicaçao á esquerda de A...

...

bom ai agora é achar os valores de a,b,c,d...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Transformação Linear] Nucleo e Imagem, ache a transformaçao
por vualas » Qua Nov 07, 2012 00:37
- 2 Respostas
- 4099 Exibições
- Última mensagem por adauto martins

Qui Dez 15, 2016 11:12
Álgebra Linear
-
- [Algebra Linear] - Composição de transformação Linear
por aligames321 » Ter Dez 04, 2012 23:53
- 1 Respostas
- 10352 Exibições
- Última mensagem por young_jedi

Qua Dez 05, 2012 12:45
Álgebra Linear
-
- Álgebra Linear -Transformação linear- Isomorfismo
por anapaulasql » Ter Jan 27, 2015 22:08
- 1 Respostas
- 11332 Exibições
- Última mensagem por adauto martins

Ter Mar 29, 2016 13:15
Álgebra Linear
-
- [Álgebra Linear] Transformação Linear Idenpotente
por Zubumafu67 » Ter Nov 17, 2020 11:38
- 0 Respostas
- 13345 Exibições
- Última mensagem por Zubumafu67

Ter Nov 17, 2020 11:38
Álgebra Linear
-
- [Álgebra Linear] Transformação linear
por Debby » Dom Mai 27, 2012 12:17
- 2 Respostas
- 8959 Exibições
- Última mensagem por Debby

Dom Mai 27, 2012 20:27
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.