• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Álgebra Linear] Provar que é um espaço vetorial

[Álgebra Linear] Provar que é um espaço vetorial

Mensagempor Nicolas1Lane » Sáb Set 06, 2014 19:40

Seja o R² definido por:
i) (x,y)+(s,t)=(x+s,y+t) tal que u=(x,y) e v=(s,t) pertencem ao R²
ii) *c(x,y)= (*cx, *cy) tal que *c pertence a R. E u e v pertencem ao R²
Prove que o R² é um espaço vetorial.

Solução:
As condições básicas para que se tenha um espaço vetorial é a soma entre 2 vetores pertencentes ao espaço deve pertencer ao espaço vetorial, assim como o produto de 2 vetores pertencentes também deve pertencer ao espaço vetorial. Então também deve-se ter satisfeitas as 4 condições da soma e as 4 condições da multiplicação de vetores.

A1, A2, A3, A4 e M1, M2, M3, M4 são satisfeitos.

---
Eu sei que o R² quando definido por i e ii é um espaço vetorial, mas como posso fazer uma prova matematicamente disto, teriam uma sugestão? Obrigado.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.