Olá a todos, estava tentando resolver essa questão que a princípio achei fácil, mas depois de pensar um pouco mais, não cheguei a conclusão final.
O enunciado é:
1) Determinar se o seguinte conjunto é subespaço de R³: W = { (a1,a2,a3) | a1=3a2 e a3=-a2 }
Minha resposta foi:
R = W não é subespaço pois, pela propriedade 2 de subespaço, u + v pertence a W. Já para esse caso:
Dados u,v pertencentes a W => u = ( 3(a2), (a1)/3 , -(a1)/3 ) e v = ( 3(b2) , (b1)/3 , -(b1)/3 ) => u+v = (3(a2+b2) , (a1+b1)/3 , -(a1+b1)/3 ) .
Gostaria de saber, se pelo fato de o sistema não ser determinado, o W não poderia ser subespaço vetorial, pois nesse caso a2 = a1/3 e também a2 = -a3
Agradeço a atenção.