• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBLEMAS VETORES

PROBLEMAS VETORES

Mensagempor belinha26 » Seg Jun 24, 2013 19:03

Em uma variação do esporte de tiro ao alvo, um atirador precisa acertar
um alvo em movimento. Considere a situação em que o alvo é uma
pequena bola que rola pelo chão plano de uma grande área livre em uma trajetória retilínea. De
outro lado, o atirador encontra-se com a arma empunhada em outro ponto desta área. Admita
um sistema de referência tridimensional, com unidade de metros, cujo eixo z represente a
altura a partir do chão. Segundo este sistema, a bola parte de um ponto (1, 1, 0) e rola na
direção do vetor (1, 2, 0). De outro lado o atirador encontra-se com a arma posicionada no
ponto (10, 4, 1.5). Ele mira de tal forma que a arma alinha-se com a direção do vetor (-4, 7, -1.5). Considerando-se que nessas condições o atirador acerta a bola, em qual ponto da área
livre a bola é atingida pela bala?

MINHA RESPOSTA DEU 9,13,O, PRECISO SABER ONDE EU ERREI.
belinha26
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jun 24, 2013 18:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: PROBLEMAS VETORES

Mensagempor young_jedi » Qua Jun 26, 2013 22:21

primeiro encontrando as esquações dos movimentos da bola e do tiro
bola:

(x,y,z)=(1,1,0)+t(1,2,0)

tiro:

(x,y,z)=(10,4,1.5)+v.(-4,7,-1.5)


igualando os vetores temos

(1,1,0)+t(1,2,0)=(10,4,1.5)+v.(-4,7,-1.5)

\begin{cases}1+t=10-4v\\1+2t=4+7v\\0=1.5-1.5v\end{cases}

resolvendo os sistema e encontrando t e v encontramos o ponto

t=5 e v=1

o ponto sera (6,11,0)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: PROBLEMAS VETORES

Mensagempor belinha26 » Seg Jul 08, 2013 19:58

young_jedi escreveu:primeiro encontrando as esquações dos movimentos da bola e do tiro
bola:

(x,y,z)=(1,1,0)+t(1,2,0)

tiro:

(x,y,z)=(10,4,1.5)+v.(-4,7,-1.5)


igualando os vetores temos

(1,1,0)+t(1,2,0)=(10,4,1.5)+v.(-4,7,-1.5)

\begin{cases}1+t=10-4v\\1+2t=4+7v\\0=1.5-1.5v\end{cases}

resolvendo os sistema e encontrando t e v encontramos o ponto

t=5 e v=1

o ponto sera (6,11,0)
porque v é igual a 1
belinha26
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jun 24, 2013 18:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: PROBLEMAS VETORES

Mensagempor young_jedi » Seg Jul 08, 2013 20:41

resolvendo a ultima equação do sistema encontramos que v=1

0=1,5-1,5.v

1,5v=1,5

v=\frac{1,5}{1,5}=1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: