• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBLEMAS VETORES

PROBLEMAS VETORES

Mensagempor belinha26 » Seg Jun 24, 2013 19:03

Em uma variação do esporte de tiro ao alvo, um atirador precisa acertar
um alvo em movimento. Considere a situação em que o alvo é uma
pequena bola que rola pelo chão plano de uma grande área livre em uma trajetória retilínea. De
outro lado, o atirador encontra-se com a arma empunhada em outro ponto desta área. Admita
um sistema de referência tridimensional, com unidade de metros, cujo eixo z represente a
altura a partir do chão. Segundo este sistema, a bola parte de um ponto (1, 1, 0) e rola na
direção do vetor (1, 2, 0). De outro lado o atirador encontra-se com a arma posicionada no
ponto (10, 4, 1.5). Ele mira de tal forma que a arma alinha-se com a direção do vetor (-4, 7, -1.5). Considerando-se que nessas condições o atirador acerta a bola, em qual ponto da área
livre a bola é atingida pela bala?

MINHA RESPOSTA DEU 9,13,O, PRECISO SABER ONDE EU ERREI.
belinha26
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jun 24, 2013 18:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: PROBLEMAS VETORES

Mensagempor young_jedi » Qua Jun 26, 2013 22:21

primeiro encontrando as esquações dos movimentos da bola e do tiro
bola:

(x,y,z)=(1,1,0)+t(1,2,0)

tiro:

(x,y,z)=(10,4,1.5)+v.(-4,7,-1.5)


igualando os vetores temos

(1,1,0)+t(1,2,0)=(10,4,1.5)+v.(-4,7,-1.5)

\begin{cases}1+t=10-4v\\1+2t=4+7v\\0=1.5-1.5v\end{cases}

resolvendo os sistema e encontrando t e v encontramos o ponto

t=5 e v=1

o ponto sera (6,11,0)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: PROBLEMAS VETORES

Mensagempor belinha26 » Seg Jul 08, 2013 19:58

young_jedi escreveu:primeiro encontrando as esquações dos movimentos da bola e do tiro
bola:

(x,y,z)=(1,1,0)+t(1,2,0)

tiro:

(x,y,z)=(10,4,1.5)+v.(-4,7,-1.5)


igualando os vetores temos

(1,1,0)+t(1,2,0)=(10,4,1.5)+v.(-4,7,-1.5)

\begin{cases}1+t=10-4v\\1+2t=4+7v\\0=1.5-1.5v\end{cases}

resolvendo os sistema e encontrando t e v encontramos o ponto

t=5 e v=1

o ponto sera (6,11,0)
porque v é igual a 1
belinha26
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jun 24, 2013 18:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: PROBLEMAS VETORES

Mensagempor young_jedi » Seg Jul 08, 2013 20:41

resolvendo a ultima equação do sistema encontramos que v=1

0=1,5-1,5.v

1,5v=1,5

v=\frac{1,5}{1,5}=1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}