por lincolnluizcorrea » Qua Mai 01, 2013 13:05
Bom dia.
Sou novato no fórum, então desculpem-me algum possível erro de formatação da dúvida quanto à postagem.
Problema:
Apresenta-se um conjunto de operações de adição e multiplicação por escalar definidas. Verificar quais deles são espaços vetoriais. Para aqueles que não forem espaços vetoriais, citar os axiomas que não se verificam.
IR^2, (a,b) + (c,d) = (a,b)
alfa(a,b) = (alfa a, alfa b)
Minha tentativa:
u = (x,y)
v = (x2,y2)
w = (0,0) -> pois o espaço é bidimensional
Axiomas soma:
A1)
u + (v+w) = (u+v) + w
(x,y) + [(x2,y2) + (0,0)] = [(x,y) + (x2,y2)] + (0,0)
(x,y) + (x2+0, y2+0) = (x+x2, y+y2)
(x+x2, y+y2) = (x+x2, y+y2)
A2) u + v = v + u
(x,y) + (x2,y2) = (x2,y2) + (x,y)
(x+x2, y+y2) = (x2+x, y2+y)
Sem necessidade de explicar os demais axiomas.. gostaria de saber:
Porque a adição 1 (A1) é considerada que pertence ao espaço vetorial exposto;
Porque a adição 2 (A2) não é considerada pertencente ao espaço vetorial exposto;
Obrigado!!
-
lincolnluizcorrea
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mai 01, 2013 12:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: eng. mecanica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [ÁLGEBRA] ESPAÇOS VETORIAIS:
por Damile » Qui Mai 10, 2012 14:55
- 4 Respostas
- 2147 Exibições
- Última mensagem por nietzsche

Dom Mai 13, 2012 21:12
Álgebra Linear
-
- Algebra Linear: Igualdade de Subespaços vetoriais
por leandro_aur » Ter Nov 01, 2011 05:40
- 1 Respostas
- 3497 Exibições
- Última mensagem por MarceloFantini

Ter Nov 01, 2011 15:21
Álgebra
-
- algebra linear e espaços vetorial
por bebelo32 » Qui Jun 11, 2015 17:48
- 0 Respostas
- 1209 Exibições
- Última mensagem por bebelo32

Qui Jun 11, 2015 17:48
Álgebra Linear
-
- Espaços vetoriais
por alzenir agapito » Qui Jul 21, 2011 17:41
- 2 Respostas
- 2190 Exibições
- Última mensagem por alzenir agapito

Sex Jul 22, 2011 21:51
Álgebra
-
- Espaços vetoriais
por crsjcarlos » Seg Jun 10, 2013 19:14
- 0 Respostas
- 1209 Exibições
- Última mensagem por crsjcarlos

Seg Jun 10, 2013 19:14
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.