• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Interno

Produto Interno

Mensagempor Claudin » Sáb Fev 16, 2013 15:50

Sabendo que ||u||=3 e ||v||=5, com u e v elementos de um espaço euclidiano, determine \alpha e \Re (alpha pertencente aos reais), de maneira que <u+\alpha v, u-\alpha v>=0

Se alguém puder ajudar nesta questão.

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Interno

Mensagempor young_jedi » Ter Fev 19, 2013 20:46

supondo o elemento u como sendo

u=(u_1,u_2,u_3,\dots,u_n)

e

v=(v_1,v_2,v_3,\dots,v_n)

então

<u+\alpha v,u-\alpaha v>=(u_1+\alpha v_1)(u_1-\alpha v_1)+(u_2+\alpha v_2)(u_2-\alpha v_2)+(u_3+\alpha v_3)(u_3-\alpha v_3)+\dots+(u_n+\alpha v_1)(u_n-\alpha v_n)

<u+\alpha v,u-\alpaha v>=u_1^2-\alpha^2.v_1^2+u_2^2-\alpha^2.v_2^2+u_3^2-\alpha^2.v_3^2+\dots+u_n^2-\alpha^2.v_n1^2

<u+\alpha v,u-\alpaha v>=(u_1^2+u_2^2+u_3^2+\dots+u_n^2)-\alpha^2.(v_1^2+v_2^2+v_3^2+\dots+v_n^2)

<u+\alpha v,u-\alpaha v>=\|u\|^2-\alpha^2.\|v\|^2

<u+\alpha v,u-\alpaha v>=3^2-\alpha^2.5^2

3^2-\alpha^2.5^2=0

\alpha=\pm\frac{3}{5}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Produto Interno

Mensagempor Claudin » Ter Fev 19, 2013 21:05

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}