Seja a transformação Linear
a) S: R³->R4, S ( x,y) = ( x+y,z,x-y,y+z)
Calcular (SoT)(x,Y) se T: R²->R³
T (x,y) = ( 2x+y, x-y, x-3y)
b) Determinar a matriz canônica de SoT e mostrar que ela é o produto da matriz canônica de S pela matriz canônica de T.
Desde já agradeço. Esse é o único exercício de uma lista de 14 que eu tenho que fazer.

![\begin{bmatrix}3&0\\1&-3\\1&2\\2&-4\end{bmatrix}.\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}3x\\x-3y\\x+2y\\2x-4y\end{array}\right] \begin{bmatrix}3&0\\1&-3\\1&2\\2&-4\end{bmatrix}.\left[\begin{array}{c}x\\y\end{array}\right]=\left[\begin{array}{c}3x\\x-3y\\x+2y\\2x-4y\end{array}\right]](/latexrender/pictures/fba9e58cf88556b82a5f0fe9cca64789.png)

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.