por BRUNO2214 » Sex Mar 18, 2016 16:48
Estou tentando resolver exercício
Determine que (v,u) seja LD ,sendo u=(1,m,n+1) e v=(m,n,10).
joguei na matriz que caiu ne um sistema no qual as variáveis :
n-m²=0
10-m(n+1)=0
10m -n(n+1)=0
após isto não sei mais qual rumo tomar !Alguém poderia me ajudar a terminas a fazer e indicar qual matéria eu preciso ter conhecimento para concluir esta equação?
-
BRUNO2214
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mar 18, 2016 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por adauto martins » Seg Mar 21, 2016 19:44
para u,v serem LD,e necessario q. um seja combinaçao do outro,ou seja...


sistema com tres equaçoes e tres incognitas...
faz.as substituiçoes em a,teremos:

,aqui uma eq.de terceiro grau...
ai é determ. o valor de a,depois de m,n...equaçao cubica e calculo,e calculo...
veja metodo de reduçao a uma eq. do tipo...

...
bons calculos!resolva-o...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por 0 kelvin » Ter Mar 22, 2016 22:07
Se as equações não são lineares, veja se não tem como linearizar com substituição de variável. Veja tb se não tem como cancelar a variável que tem quadrado ou cubo.
Se apareceu um sistema de equações não lineares q não tem jeito com as técnicas comuns pra sistemas lineares, aí ou o enunciado tem erro ou a equação q aparece o termo não linear esta errada.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
Voltar para Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.