por pedro_kampos » Dom Ago 03, 2014 20:19
Pessoal tou com uma grande dúvida nessa questão, fiz até uma resolução mas não consigo achar a resposta certa

Minha Humilde tentativa:

-
pedro_kampos
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Jul 14, 2014 04:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia da computacao
- Andamento: cursando
por adauto martins » Seg Nov 10, 2014 16:02
1)


)
2)

...escalonando ...
![x+7y+z+w=0,
-8y-3z-10w=0...resolvendo o sistema teremos:
[tex]{U}_{2}=((x,y,z,w)/\alpha(-5/8,-3/8,1,0)+\beta(0,-1/2,0,1)) x+7y+z+w=0,
-8y-3z-10w=0...resolvendo o sistema teremos:
[tex]{U}_{2}=((x,y,z,w)/\alpha(-5/8,-3/8,1,0)+\beta(0,-1/2,0,1))](/latexrender/pictures/f20bc228422e3c46da028fca7acec5e6.png)
...
((-2/3,-1/3,1,0),(0,-1,0,1),(-5/8,-1/2,1,0),(0,-1/2,0,1))formam um conj. gerador de

...vamos buscar uma base L.I desse espaço gerado pelos vetores de

...
seja a matriz:

diagonizando e triangulando superiormente a matriz teremos:

,logo o conj.de vetores geradores ((1,1/2,-3/2,0),(0,1,15/2,0),(0,0,1,0),(0,0,0,1)) e LI e forma uma base para

...logo das respostas ,a q. mais tem a ver com a soluçao,e a letra B)a base canonica do

obs.:costumo errar em contas numericas,entao seria bom fazer os calculos,mas o raciocinio e esse...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Algebra L.] Soma de subespaços
por pedro_kampos » Dom Ago 03, 2014 20:34
- 4 Respostas
- 2734 Exibições
- Última mensagem por e8group

Sáb Nov 08, 2014 15:43
Álgebra Linear
-
- [Álgebra Linear]-Interseção de subespaços
por Ana_Rodrigues » Ter Mai 08, 2012 23:19
- 1 Respostas
- 2320 Exibições
- Última mensagem por MarceloFantini

Qua Mai 09, 2012 21:34
Álgebra Linear
-
- Algebra Linear: Igualdade de Subespaços vetoriais
por leandro_aur » Ter Nov 01, 2011 05:40
- 1 Respostas
- 3639 Exibições
- Última mensagem por MarceloFantini

Ter Nov 01, 2011 15:21
Álgebra
-
- [Algebra Linear] - Matriz de uma trasnformacao linear, Ajuda
por rodrigojuara » Dom Nov 30, 2014 15:05
- 1 Respostas
- 8153 Exibições
- Última mensagem por adauto martins

Seg Dez 01, 2014 16:12
Álgebra Linear
-
- [Algebra Linear] - Composição de transformação Linear
por aligames321 » Ter Dez 04, 2012 23:53
- 1 Respostas
- 10527 Exibições
- Última mensagem por young_jedi

Qua Dez 05, 2012 12:45
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.