• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Base do Espaço Vetorial

Base do Espaço Vetorial

Mensagempor biacrass » Sex Out 11, 2013 19:06

Encontre a base do P3(R) dado por S = {x²+1, x², x³ + x² +1, x³+1, x²-1}.

Para resolver tentei fazer uma combinação linear igualando a um polinômio genérico, mas não deu certo. Alguém tem alguma ideia de como se resolve isso.
biacrass
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Out 11, 2013 13:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Adm
Andamento: formado

Re: Base do Espaço Vetorial

Mensagempor Tathiclau » Sáb Dez 14, 2013 17:41

Eu achei uma base {(1,0,1,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1)}
isolando x²+1(1,0,1,0,0) + x²(0,1,0,0,0)... entende?
Tathiclau
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Dez 11, 2013 23:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Base do Espaço Vetorial

Mensagempor Russman » Dom Dez 15, 2013 00:16

O vetor x^3 + x^2 + 1 é uma combinação linear de x^2 e x^3 + 1. Logo, o conjunto não é LI.

Uma base para o conjunto S' = (x^2+1 , x^2, x^3 + 1, x^2 - 1) é X= \left \{ 1,x,x^2,x^3 \right \}. Veja que X é LI e GERA S'. Porque? Por que X é LI e a cada vetor de S' se escreve de forma única como combinação linear dos vetores de X.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Base do Espaço Vetorial

Mensagempor biacrass » Seg Jan 13, 2014 11:13

ok, obrigado, consegui compreender.
biacrass
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Out 11, 2013 13:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Adm
Andamento: formado

Re: Base do Espaço Vetorial

Mensagempor Guilherme Pimentel » Qua Jan 15, 2014 06:03

O modo natural é considerar os polinomios como vetores tendo como coordenadas os seus coeficientes:

\\
p(x)=a_1x^3+a_2x^2+a_3x+a_4\rightarrow p=(a_1,a_2,a_3,a_4) \\
\textrm{assim vc quer o espa\c{c}o gerado por}:\\
S=\{(0,1,0,1),(0,1,0,0),(1,1,0,1),(1,0,0,1),(0,1,0,-1) \}

Como já foi observado, o conjunto é LD, logo a base deve ter menos do que 5 elementos, pois a base é o menor conjunto LI gerador do espaço:

usando o WA para poupar tempo: http://www.wolframalpha.com/input/?i=Column+space+Transpose%5B%7B%7B0%2C1%2C0%2C1%7D%2C%7B0%2C1%2C0%2C0%7D%2C%7B1%2C1%2C0%2C1%7D%2C%7B1%2C0%2C0%2C1%7D%2C%7B0%2C1%2C0%2C-1%7D%7D%5D

Vemos que os 3 primeiros vetores geram o espaço.

O conjunto X proposto
Russman escreveu:O vetor x^3 + x^2 + 1 é uma combinação linear de x^2 e x^3 + 1. Logo, o conjunto não é LI.

Uma base para o conjunto S' = (x^2+1 , x^2, x^3 + 1, x^2 - 1) é X= \left \{ 1,x,x^2,x^3 \right \}. Veja que X é LI e GERA S'. Porque? Por que X é LI e a cada vetor de S' se escreve de forma única como combinação linear dos vetores de X.


gera todo o espaço dos polinômios de grau\leq 3 e não apenas S.
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59