• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas no espaço

Retas no espaço

Mensagempor Razoli » Sáb Ago 31, 2013 09:38

Pessoal, não consegui entender esse exercicio! como poderia resolve-lo? Alguem poderia me explicar?

1.Seja V = R^2

a)Ache w na reta x + y = 0 e u no eixo y tais que v = (-1,4) seja escrito como a soma de w + u;

b) Dê a representação de um elemento arbitrario v de V como soma w + u como em a)
Razoli
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Abr 06, 2013 15:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: Retas no espaço

Mensagempor e8group » Sáb Ago 31, 2013 20:49

Observe que w =(a,b) pertence a reta de equação x+y = 0 , então a+b = 0 e portanto b = -a (----> w=(a,-a)) .Por outro lado , o eixo y é a reta vertical x= 0 .Assim , se u pertence a este eixo então u = (0
,d) onde a,d são número fixados a ser determinados . Para concluir ,note que v(dado) se exprimir por w+u ,isto é ,

v = (-1,4) = w+u = (a,-a) + (0,d) . Agora é só fazer contas !

Sobre o item (b) pense mais um pouco e exponha o que tentou .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)