• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida] em questão de subespaço com sistema linear

[Dúvida] em questão de subespaço com sistema linear

Mensagempor Kabection » Dom Jul 14, 2013 00:40

Olá a todos, estava tentando resolver essa questão que a princípio achei fácil, mas depois de pensar um pouco mais, não cheguei a conclusão final.

O enunciado é:

1) Determinar se o seguinte conjunto é subespaço de R³: W = { (a1,a2,a3) | a1=3a2 e a3=-a2 }


Minha resposta foi:

R = W não é subespaço pois, pela propriedade 2 de subespaço, u + v pertence a W. Já para esse caso:

Dados u,v pertencentes a W => u = ( 3(a2), (a1)/3 , -(a1)/3 ) e v = ( 3(b2) , (b1)/3 , -(b1)/3 ) => u+v = (3(a2+b2) , (a1+b1)/3 , -(a1+b1)/3 ) .


Gostaria de saber, se pelo fato de o sistema não ser determinado, o W não poderia ser subespaço vetorial, pois nesse caso a2 = a1/3 e também a2 = -a3


Agradeço a atenção.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Dúvida] em questão de subespaço com sistema linear

Mensagempor e8group » Dom Jul 14, 2013 12:41

Acho mais fácil reescrever o conjunto dado da seguinte forma W = \{(3a,a,-a) = a(3,1,-1) ; a \in \mathbb{R}\} (por simplicidade troquei "a_2 " por "a" ) que é o cojunto de todos os múltiplos de (3,1,-1) .Afirmamos que W é subespaço do \mathbb{R}^3 .De fato :

(1)

Designando O_{\mathbb{R}^3} o vetor nulo do \mathbb{R}^3 . Claramente ,

O_{\mathbb{R}^3} \in W (deixo a cargo de você demonstrar isto)


(2) Dados u =(3\alpha , \alpha , - \alpha ) , v = (3\beta, \beta , -\beta ) \in W .Temos :

u+v = (3\alpha + 3\beta , \alpha +\beta , - \alpha - \beta ) =  (3(\alpha + \beta) ,\alpha +\beta, -(\alpha + \beta)) =\\ \underbrace{[\alpha + \beta]}_{\in \mathbb{R}}]\cdot (3,1,-1) \in W.


(3) Agora basta mostrar que para todo escalar \zeta e vetor k = (3y,y,-y) \in W tem-se \zeta \cdot k \in W .Tente fazer !!


OBS.: O sistema que você mencionou é possível e indeterminado .Isto já era de ser esperado .Como vemos em (2) ,

a não exprimir-se de forma única como \alpha + \beta . Pondo \alpha = a - \beta ,para cada escolha arbitrária \beta , obtemos um novo número \alpha que somado a \beta resulta a .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Dúvida] em questão de subespaço com sistema linear

Mensagempor Kabection » Seg Jul 15, 2013 00:00

Obrigado santhiago . Realmente o que estava me confundindo foi esse sistema, mas desse jeito que você fez (reescrevendo o sistema) ficou bem mais claro e fácil de resolver essa questão. Vlw msm.

Completando a resposta:

(1)

Designando O_{\mathbb{R}^3} o vetor nulo do \mathbb{R}^3 . Claramente ,

O_{\mathbb{R}^3} \in W, pois quando a = 0 =>  a(3, 1, -1) = (0,0,0) = O_{\mathbb{R}^3}

(2)

Provado acima ^

(3)

Agora basta mostrar que para todo escalar \zeta e vetor k = (3y,y,-y) \in W tem-se \zeta \cdot k \in W = (\zeta \cdot(3y) , \zeta\cdot y , - \zeta y )=(3\cdot(\zeta y),(\zeta \cdot y) , - (\zeta \cdot y)) = (\zeta y) \cdot (3,1,-1) \in W ,
para todo \zeta e y \in {\mathbb{R}}.

Logo W é subespaço vetorial de {\mathbb{R}^3}.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Dúvida] em questão de subespaço com sistema linear

Mensagempor e8group » Seg Jul 15, 2013 10:28

Não há de quê .Está correto .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.