• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Algebra linear e geometria analitica] Duvida

[Algebra linear e geometria analitica] Duvida

Mensagempor lucasdemirand » Sáb Jul 06, 2013 15:32

Olá pessoal, estou com uma duvida no seguinte exercicio, agradeço quem puder me ajudar.
Ache o vetor u, tal que |u|=3?3 e u é ortogonal ao vetor v(2,3,-1) e ao vetor w(2,-4,6). Qual dos vetores encontrados forma ângulo agudo com o vetor j(0,1,0)
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [Algebra linear e geometria analitica] Duvida

Mensagempor e8group » Dom Jul 07, 2013 21:27

Boa noite .Todo vetor u não nulo é escrito como u = ||u|| u' onde u' é o vetor unitário .Neste caso estamos trabalhando no \mathbb{R}^3 ,então seja u' = (a,b,c) \in \mathbb{R}^3 tal que (*) a^2+b^2 + c^2 = 1 .Observe que a ortogonalidade mútua entre os vetores u,v,w implicará um sistema linear homogêneo de duas equações para três incógnitas proveniente do produto interno <u,v> = <u,w> = 0 .Por outro lado podemos substituir os resultados obtidos no sistema acima e substituir-lós em (*) que nos fornecerá duas respostas distintas(porém iguais em módulo) para uma das variáveis (a,b ou c ) .Após está etapa vamos obter duas resposta possiveis para o exercício satisfazendo a norma de u dada e <u,v> = <u,w> = 0 .Vemos então que os dois vetores obtidos possuem mesma direção e módulo porém sentidos opostos .Sendo assim ,para determinar o sentido de u basta utilizar a seguinte informação "Qual dos vetores encontrados forma ângulo agudo com o vetor j(0,1,0) " .

Alternativamente ,se você possui um pouco de conhecimento sobre o produto vetorial .Sabemos que o vetor w \wedge v é simultaneamente ortogonal a v e a w .Logo , os vetores u e w \wedge v são paralelos e portanto um é múltiplo escalar do outro .Assim ,existe um escalar \alpha \neq 0 tal que , u = \alpha w \wedge v .Ora , como ||u|| = 3\sqrt{3} ,então \alpha só pode ser 3\sqrt{3}/||w \wedge v|| ou - 3\sqrt{3}/||w \wedge v|| .Mas , o ângulo entre os vetores u ,(0,1,0) é agudo .Seja \theta \in (0,\pi/2) o ângulo entre os vetores acima .Como cos\theta > 0 concluímos <u,(0,1,0) >  > 0 , logo ...


Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.